Novel Technologies in Artificial Intelligence and Telemedicine for Glaucoma Screening

被引:4
作者
Christopher, Mark [1 ,2 ]
Hallaj, Shahin [1 ,2 ]
Jiravarnsirikul, Anuwat [1 ,4 ]
Baxter, Sally L. [1 ,2 ,3 ]
Zangwill, Linda M. [1 ,2 ]
机构
[1] Hamilton Glaucoma Ctr, Viterbi Family Dept Ophthalmol, La Jolla, CA USA
[2] Shiley Eye Inst, Viterbi Family Dept Ophthalmol, Div Ophthalmol Informat & Data Sci, La Jolla, CA USA
[3] Univ Calif San Diego, Dept Med, Div Biomed Informat, La Jolla, CA USA
[4] Mahidol Univ, Fac Med, Siriraj Hosp, Dept Ophthalmol, Bangkok, Thailand
基金
美国国家卫生研究院;
关键词
glaucoma; screening; artificial intelligence; telemedicine; novel technologies; MACHINE LEARNING CLASSIFIERS; DIABETIC-RETINOPATHY; DIAGNOSING GLAUCOMA; AUTOMATED PERIMETRY; UNITED-STATES; OPTIC DISC; HEALTH; VALIDATION; OPHTHALMOSCOPY; TRANSFORMER;
D O I
10.1097/IJG.0000000000002367
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose:To provide an overview of novel technologies in telemedicine and artificial intelligence (AI) approaches for cost-effective glaucoma screening.Methods/Results:A narrative review was performed by summarizing research results, recent developments in glaucoma detection and care, and considerations related to telemedicine and AI in glaucoma screening. Telemedicine and AI approaches provide the opportunity for novel glaucoma screening programs in primary care, optometry, portable, and home-based settings. These approaches offer several advantages for glaucoma screening, including increasing access to care, lowering costs, identifying patients in need of urgent treatment, and enabling timely diagnosis and early intervention. However, challenges remain in implementing these systems, including integration into existing clinical workflows, ensuring equity for patients, and meeting ethical and regulatory requirements. Leveraging recent work towards standardized data acquisition as well as tools and techniques developed for automated diabetic retinopathy screening programs may provide a model for a cost-effective approach to glaucoma screening.Conclusion:Leveraging novel technologies and advances in telemedicine and AI-based approaches to glaucoma detection show promise for improving our ability to detect moderate and advanced glaucoma in primary care settings and target higher individuals at high risk for having the disease.
引用
收藏
页码:S26 / S32
页数:7
相关论文
共 111 条
[1]   Home Monitoring for Glaucoma: Current Applications and Future Directions [J].
Aboobakar, Inas F. ;
Friedman, David S. .
SEMINARS IN OPHTHALMOLOGY, 2021, 36 (04) :310-314
[2]   Foundational Considerations for Artificial Intelligence Using Ophthalmic Images [J].
Abramoff, Michael D. ;
Cunningham, Brad ;
Patel, Bakul ;
Eydelman, Malvina B. ;
Leng, Theodore ;
Sakamoto, Taiji ;
Blodi, Barbara ;
Grenon, S. Marlene ;
Wolf, Risa M. ;
Manrai, Arjun K. ;
Ko, Justin M. ;
Chiang, Michael F. ;
Char, Danton .
OPHTHALMOLOGY, 2022, 129 (02) :E14-E32
[3]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[4]   Racial, Ethnic, and Socioeconomic Disparities in Glaucoma Onset and Severity in a Diverse Nationwide Cohort in the United States [J].
Acuff, Kaela ;
Radha Saseendrakumar, Bharanidharan ;
Wu, Jo-Hsuan ;
Weinreb, Robert N. ;
Baxter, Sally L. .
JOURNAL OF GLAUCOMA, 2023, 32 (09) :792-799
[5]   A deep learning model for the detection of both advanced and early glaucoma using fundus photography [J].
Ahn, Jin Mo ;
Kim, Sangsoo ;
Ahn, Kwang-Sung ;
Cho, Sung-Hoon ;
Lee, Kwan Bok ;
Kim, Ungsoo Samuel .
PLOS ONE, 2018, 13 (11)
[6]   Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma [J].
Angel Zapata, Miguel ;
Royo-Fibla, Didac ;
Font, Octavi ;
Ignacio Vela, Jose ;
Marcantonio, Ivanna ;
Ulises Moya-Sanchez, Eduardo ;
Sanchez-Perez, Abraham ;
Garcia-Gasulla, Dario ;
Cortes, Ulises ;
Ayguade, Eduard ;
Labarta, Jesus .
CLINICAL OPHTHALMOLOGY, 2020, 14 :419-429
[7]  
[Anonymous], Glaucoma Data Standards
[8]   Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images [J].
Asaoka, Ryo ;
Murata, Hiroshi ;
Hirasawa, Kazunori ;
Fujino, Yuri ;
Matsuura, Masato ;
Miki, Atsuya ;
Kanamoto, Takashi ;
Ikeda, Yoko ;
Mori, Kazuhiko ;
Iwase, Aiko ;
Shoji, Nobuyuki ;
Inoue, Kenji ;
Yamagami, Junkichi ;
Araie, Makoto .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 198 :136-145
[9]   Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier [J].
Asaoka, Ryo ;
Murata, Hiroshi ;
Iwase, Aiko ;
Araie, Makoto .
OPHTHALMOLOGY, 2016, 123 (09) :1974-1980
[10]   Clinical Validation of a Smartphone-Based Adapter for Optic Disc Imaging in Kenya [J].
Bastawrous, Andrew ;
Giardini, Mario Ettore ;
Bolster, Nigel M. ;
Peto, Tunde ;
Shah, Nisha ;
Livingstone, Iain A. T. ;
Weiss, Helen A. ;
Hu, Sen ;
Rono, Hillary ;
Kuper, Hannah ;
Burton, Matthew .
JAMA OPHTHALMOLOGY, 2016, 134 (02) :151-158