Style Augmentation and Domain-Aware Parametric Contrastive Learning for Domain Generalization

被引:0
|
作者
Li, Mingkang [1 ]
Zhang, Jiali [1 ]
Zhang, Wen [1 ]
Gong, Lu [1 ]
Zhang, Zili [1 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400715, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023 | 2023年 / 14120卷
关键词
Domain Generalization; Deep Learning; Data Augmentation; Contrastive Learning; Object Recognition;
D O I
10.1007/978-3-031-40292-0_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The distribution shift between training data and test data degrades the performance of deep neural networks (DNNs), and domain generalization (DG) alleviates this problem by extracting domain-invariant features explicitly or implicitly. With limited source domains for training, existing approaches often generate samples of new domains. However, most of these approaches confront the issue of losing class-discriminative information. To this end, we propose a novel domain generalization framework containing style augmentation and Domain-aware Parametric Contrastive Learning (DPCL). Specifically, features are first decomposed into high-frequency and low-frequency components, which contain shape and style information, respectively. Since the shape cues contain class information, the high-frequency components remain unchanged. Then Exact Feature Distribution Mixing (EFDMix) is used for diversifying the low-frequency components, which fully uses each order statistic of the features. Finally, both components are re-merged to generate new features. Additionally, DPCL is proposed, based on supervised contrastive learning, to enhance domain invariance by ignoring negative samples from different domains and introducing a set of parameterized class-learnable centers. The effectiveness of the proposed style augmentation method and DPCL is confirmed by experiments. On the PACS dataset, our method improves the state-of-art average accuracy by 1.74% using ResNet-50 backbone and even achieves excellent performance in the single-source DG task.
引用
收藏
页码:211 / 224
页数:14
相关论文
共 50 条
  • [1] Feature Stylization and Domain-aware Contrastive Learning for Domain Generalization
    Jeon, Seogkyu
    Hong, Kibeom
    Lee, Pilhyeon
    Lee, Jewook
    Byun, Hyeran
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 22 - 31
  • [2] Domain-aware triplet loss in domain generalization
    Guo, Kaiyu
    Lovell, Brian C.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 243
  • [3] Boosting domain generalization by domain-aware knowledge distillation
    Zhang, Zhongqiang
    Liu, Ge
    Cai, Fuhan
    Liu, Duo
    Fang, Xiangzhong
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [4] CbDA: Contrastive-Based Data Augmentation for Domain Generalization
    Jiang, Ziyi
    Zhang, Liwen
    Liang, Xiaoxuan
    Chen, Zhenghan
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [5] Towards Domain-Aware Stable Meta Learning for Out-of-Distribution Generalization
    Sun, Mingchen
    Li, Yingji
    Wang, Ying
    Wang, Xing
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (08)
  • [6] Instance Paradigm Contrastive Learning for Domain Generalization
    Chen, Zining
    Wang, Weiqiu
    Zhao, Zhicheng
    Su, Fei
    Men, Aidong
    Dong, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1032 - 1042
  • [7] Anomaly Detection Framework With Contrastive Learning and Multiview Augmentation for Time-Series Domain Generalization
    Lee, Yeseul
    Song, Seunghwan
    Park, Kwan-Yong
    Koo, Byoung-Mo
    Baek, Jun-Geol
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [8] Domain generalization for mammographic image analysis with contrastive learning
    Li, Zheren
    Cui, Zhiming
    Zhang, Lichi
    Wang, Sheng
    Lei, Chenjin
    Ouyang, Xi
    Chen, Dongdong
    Zhao, Xiangyu
    Liu, Chunling
    Liu, Zaiyi
    Gu, Yajia
    Shen, Dinggang
    Cheng, Jie-Zhi
    Computers in Biology and Medicine, 2025, 185
  • [9] Achieving domain generalization for underwater object detection by domain mixup and contrastive learning
    Chen, Yang
    Song, Pinhao
    Liu, Hong
    Dai, Linhui
    Zhang, Xiaochuan
    Ding, Runwei
    Li, Shengquan
    NEUROCOMPUTING, 2023, 528 : 20 - 34
  • [10] DOMINO: Domain-aware loss for deep learning calibration
    Stolte, Skylar E.
    Volle, Kyle
    Indahlastari, Aprinda
    Albizu, Alejandro
    Woods, Adam J.
    Brink, Kevin
    Hale, Matthew
    Fang, Ruogu
    SOFTWARE IMPACTS, 2023, 15