Double Network Gel Electrolyte with High Ionic Conductivity and Mechanical Strength for Zinc-Ion Batteries

被引:7
|
作者
Zeng, Weikang [1 ]
Zhang, Shaobo [2 ,3 ]
Lan, Jiaqi [4 ]
Lv, You [1 ]
Zhu, Guoqing [1 ]
Huang, Haotian [1 ]
Lv, Wei [4 ]
Zhu, Yuan [1 ]
机构
[1] Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Sch Environm, Harbin 150090, Peoples R China
[3] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
[4] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
zinc-ion batteries; double network; gel electrolyte; high ionic conductivity; high mechanical strength; HIGH-CAPACITY; CATHODE; DISSOLUTION; ANODES;
D O I
10.1021/acsnano.4c09879
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gel electrolytes hold promise for stabilizing zinc-ion batteries (ZIBs), but achieving both high ionic conductivity and strong mechanical properties remains challenging. This work presents a double network gel electrolyte based on poly(N-hydroxymethyl acrylamide) (PNMA) and sodium alginate (SA), overcoming this trade-off. The PNMA network provides mechanical strength and water retention, while the SA network facilitates rapid zinc-ion (Zn2+) diffusion through tailored solvation. This double network gel exhibits a tensile strength of up to 838 kPa, significantly higher than previous reports. The SA network provides ion channels for rapid transport of hydrated Zn2+, enhancing the ionic conductivity to a ground-breaking 33.1 mS cm(-1). This value is even higher than the liquid electrolytes. The growth of Zn dendrites is also suppressed due to the mechanical constraint and rapid ion conduction. In symmetrical cells, the PNMA/SA gel demonstrates exceptional cycling stability (>2000 h). Characterizations show this is because of reduced free water amount, hindering cathode material dissolution. The full cells with sodium vanadate cathode manifest a high capacity (364.8 mA h g(-1) at 0.5 A g(-1)) and excellent capacity retention (83% after 2500 cycles at 10 A g(-1)). This double network design offers a way to achieve high-performance and stable ZIBs.
引用
收藏
页码:26391 / 26400
页数:10
相关论文
共 50 条
  • [41] Ethylene carbonate as an organic electrolyte additive for high-performance aqueous rechargeable zinc-ion batteries
    Wijitrat, Apinya
    Qin, Jiaqian
    Kasemchainan, Jitti
    Tantavichet, Nisit
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 112 : 96 - 105
  • [42] Toward Stable Zinc-Ion Batteries: Use of a Chelate Electrolyte Additive for Uniform Zinc Deposition
    Xie, Kaixuan
    Ren, Kaixin
    Sun, Chuang
    Yang, Shuna
    Tong, Minman
    Yang, Shun
    Liu, Zhifang
    Wang, Qinghong
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04): : 4170 - 4178
  • [43] A Fluorinated Solid-state-electrolyte Interface Layer Guiding Fast Zinc-ion Oriented Deposition in Aqueous Zinc-ion Batteries
    Zhu, Mengyu
    Wang, Huicai
    Wang, Huibo
    Li, Chunxin
    Chen, Danling
    Wang, Kexuan
    Bai, Zhengshuai
    Chen, Shi
    Zhang, Yanyan
    Tang, Yuxin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (04)
  • [44] Zincophilic Design and the Electrode/Electrolyte Interface for Aqueous Zinc-Ion Batteries: A Review
    Zhao, Chenyang
    Zhang, Yu
    Gao, Jiaze
    Guo, Zhikun
    Chen, Aosai
    Liu, Nannan
    Lu, Xingyuan
    Zhang, Xigui
    Zhang, Naiqing
    BATTERIES & SUPERCAPS, 2023, 6 (05)
  • [45] Novel electrolyte additive of graphene oxide for prolonging the lifespan of zinc-ion batteries
    Wang, Xuyang
    Kirianova, Alina, V
    Xu, Xieyu
    Liu, Yanguang
    Kapitanova, Olesya O.
    Gallyamov, Marat O.
    NANOTECHNOLOGY, 2022, 33 (12)
  • [46] In Situ Network Electrolyte Based on a Functional Polymerized Ionic Liquid with High Conductivity toward Lithium Metal Batteries
    Sha, Yifan
    Yu, Tianhao
    Dong, Tao
    Wu, Xing-long
    Tao, Haoyu
    Zhang, Haitao
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 14755 - 14765
  • [47] Recent Progress on High-Performance Cathode Materials for Zinc-Ion Batteries
    Zhang, Maiwen
    Liang, Ruilin
    Or, Tyler
    Deng, Ya-Ping
    Yu, Aiping
    Chen, Zhongwei
    SMALL STRUCTURES, 2021, 2 (02):
  • [48] Engineering integrated structure for high-performance flexible zinc-ion batteries
    Liu, Yang
    Zhou, Xiaoming
    Bai, Yang
    Liu, Rong
    Li, Xiaolong
    Xiao, Huanhao
    Wang, Yuanming
    Wang, Xue
    Ma, Yu
    Yuan, Guohui
    CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [49] Enhanced ionic conductivity of the solid electrolyte for lithium-ion batteries
    Tron, Artur
    Nosenko, Alexander
    Park, Yeong Don
    Mun, Junyoung
    JOURNAL OF SOLID STATE CHEMISTRY, 2018, 258 : 467 - 470
  • [50] PVDF-HFP/BP nanosheets composite gel electrolyte with high ionic conductivity for lithium batteries
    Chen, Yongli
    Wang, Lu
    Zeng, Linghong
    Huang, Xilong
    Lv, Wenyan
    MATERIALS TODAY COMMUNICATIONS, 2024, 38