GeST: Generalized Stencil Auto-tuning Framework on GPUs

被引:0
作者
Sun, Qingxiao [1 ]
机构
[1] China Univ Petr, SSSLab, Beijing, Peoples R China
来源
PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024 | 2024年
关键词
Stencil Computation; GPU; Auto-tuning; Parameter Search;
D O I
10.1145/3674399.3674461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stencil computations are widely used in high performance computing (HPC) applications. In recent years, stencils have become more diverse in terms of stencil order, memory accesses, and computation patterns. To adapt diverse stencils to GPUs, a variety of optimization techniques have been proposed. Due to the diversity of stencil patterns and GPU architectures, no single optimization technique fits all stencils. Therefore, stencil auto-tuning mechanisms have been proposed to conduct parameter searches for the combination of optimization techniques. However, existing mechanisms introduce large offline overhead and are inflexible to generalize to arbitrary stencil patterns. We propose GeST, a generalized auto-tuning framework that efficiently determines the optimal parameter setting of the global optimization space for stencils on GPUs. The experimental results show that GeST can identify better-performing settings in a short time compared to the state-of-the-art works.
引用
收藏
页码:199 / 200
页数:2
相关论文
共 7 条
  • [1] OpenTuner: An Extensible Framework for Program Autotuning
    Ansel, Jason
    Kamil, Shoaib
    Veeramachaneni, Kalyan
    Ragan-Kelley, Jonathan
    Bosboom, Jeffrey
    O'Reilly, Una-May
    Amarasinghe, Saman
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'14), 2014, : 303 - 315
  • [2] StencilFlow: Mapping Large Stencil Programs to Distributed Spatial Computing Systems
    Licht, Johannes de Fine
    Kuster, Andreas
    De Matteis, Tiziano
    Ben-Nun, Tal
    Hofer, Dominic
    Hoefler, Torsten
    [J]. CGO '21: PROCEEDINGS OF THE 2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION (CGO), 2021, : 315 - 326
  • [3] AN5D: Automated Stencil Framework for High-Degree Temporal Blocking on GPUs
    Matsumura, Kazuaki
    Zohouri, Hamid Reza
    Wahib, Mohamed
    Endo, Toshio
    Matsuoka, Satoshi
    [J]. CGO'20: PROCEEDINGS OF THE18TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION, 2020, : 199 - 211
  • [4] On Optimizing Complex Stencils on GPUs
    Rawat, Prashant Singh
    Vaidya, Miheer
    Sukumaran-Rajam, Aravind
    Rountev, Atanas
    Pouchet, Louis-Noel
    Sadayappan, P.
    [J]. 2019 IEEE 33RD INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2019), 2019, : 641 - 652
  • [5] Adaptive Auto-Tuning Framework for Global Exploration of Stencil Optimization on GPUs
    Sun, Qingxiao
    Liu, Yi
    Yang, Hailong
    Jiang, Zhonghui
    Luan, Zhongzhi
    Qian, Depei
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (01) : 20 - 33
  • [6] StencilMART: Predicting Optimization Selection for Stencil Computations across GPUs
    Sun, Qingxiao
    Liu, Yi
    Yang, Hailong
    Jiang, Zhonghui
    Luan, Zhongzhi
    Qian, Depei
    [J]. 2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 875 - 885
  • [7] csTuner: Scalable Auto-tuning Framework for Complex Stencil Computation on GPUs
    Sun, Qingxiao
    Liu, Yi
    Yang, Hailong
    Jiang, Zhonghui
    Liu, Xiaoyan
    Dun, Ming
    Luan, Zhongzhi
    Qian, Depei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021), 2021, : 192 - 203