Engineering towards stable sodium metal anodes in room temperature sodium-sulfur batteries: challenges, progress and perspectives

被引:6
作者
Qi, Yuruo [1 ,2 ]
Xu, Maowen [1 ,2 ]
机构
[1] Southwest Univ, Sch Mat & Energy, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Battery Mat & Technol, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Room temperature sodium-sulfur batteries; Na anodes; Na dendrites; Corrosion/passivation; Complex/dynamic SEI; LONG CYCLE-LIFE; CARBON NANOFIBERS; CURRENT COLLECTOR; ION BATTERIES; S CATHODES; ELECTROLYTES; CAPACITY; BINDER; HOST; CELL;
D O I
10.1016/j.ensm.2024.103704
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Room temperature sodium-sulfur batteries (RT Na-S batteries) are regarded as promising power sources particularly for grid-scale energy storage, owing to their high theoretical capacity and low-cost electrode materials. Currently, numerous studies have focused on the S-cathode. Moreover, it is identified that the dissolution/shuttle of sodium polysulfides (NaPSs) in ether-based electrolytes and the grievous nucleophilic reaction in ester-based electrolytes are the most pivotal challenges for RT Na-S batteries. Nevertheless, the practical advancement of RT Na-S batteries is equally hampered by significant obstacles associated with Na anodes. This review starts with the discussion on the origin, cell chemistries and principles of RT Na-S batteries. Afterwards, severe challenges confronted by Na anodes especially in RT Na-S batteries are concluded. Then, we provide an exhaustive overview of the present stabilization strategies for Na anodes in polysulfides-rich environments, including electrolyte, interface and separator. Moreover, theoretical investigations to foundational data concerning stable NaPSs, surface structure, charge transfer kinetics and sodium deposition/dissolution dynamics in polysulfide-rich electrolytes are summarized. Finally, this article also provides suggestions on underscoring fundamental scientific challenges and considerations necessitating attention in order to promote comprehensive development of RT Na-S batteries.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Structural regulation of electrocatalysts for room-temperature sodium-sulfur batteries
    Wu, Liang
    Dou, Xi-Long
    Wang, Xiao-Yun
    Liu, Zi-Jiang
    Li, Wei-Han
    Wu, Ying
    RARE METALS, 2024, : 2294 - 2313
  • [22] Metallic Sodium Anodes for Advanced Sodium Metal Batteries: Progress, Challenges and Perspective
    Shi, Huan
    Zhang, Yamin
    Liu, Yang
    Yuan, Changzhou
    CHEMICAL RECORD, 2022, 22 (10)
  • [23] Towards high performance room temperature sodium-sulfur batteries: Strategies to avoid shuttle effect
    Tang, Wenwen
    Aslam, Muhammad Kashif
    Xu, Maowen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 606 : 22 - 37
  • [24] Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries
    Yang, Jia-ying
    Han, Hao-jie
    Repich, Hlib
    Zhi, Ri-cheng
    Qu, Chang-zhen
    Kong, Long
    Kaskel, Stefan
    Wang, Hong-qiang
    Xu, Fei
    Li, He-jun
    NEW CARBON MATERIALS, 2020, 35 (06) : 630 - 643
  • [25] Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries
    Fang, Hengyi
    Gao, Suning
    Zhu, Zhuo
    Ren, Meng
    Wu, Quan
    Li, Haixia
    Li, Fujun
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) : 189 - 199
  • [26] Strategies for Polysulfide Immobilization in Sulfur Cathodes for Room-Temperature Sodium-Sulfur Batteries
    Zhou, Jiahui
    Xu, Shengming
    Yang, Yue
    SMALL, 2021, 17 (32)
  • [27] Electrolytes/Interphases: Enabling Distinguishable Sulfur Redox Processes in Room-Temperature Sodium-Sulfur Batteries
    Liu, Hanwen
    Lai, Wei-Hong
    Lei, Yaojie
    Yang, Huiling
    Wang, Nana
    Chou, Shulei
    Liu, Hua Kun
    Dou, Shi Xue
    Wang, Yun-Xiao
    ADVANCED ENERGY MATERIALS, 2022, 12 (06)
  • [28] Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive
    Liu, Dezhong
    Li, Zhi
    Li, Xiang
    Chen, Xin
    Li, Zhen
    Yuan, Lixia
    Huang, Yunhui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6658 - 6666
  • [29] Effective strategies to accelerate the redox kinetics of sulfur cathodes for room-temperature sodium-sulfur batteries
    Wang, Jinlin
    Zeng, Xiaoyuan
    Xing, Yubo
    Dong, Peng
    Zhang, Yingjie
    Zhang, Yannan
    Xiao, Jie
    Wu, Can
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1018
  • [30] Recent advances in electrolytes for room-temperature sodium-sulfur batteries: A review
    Syali, Mohanjeet Singh
    Kumar, Deepak
    Mishra, Kuldeep
    Kanchan, D. K.
    ENERGY STORAGE MATERIALS, 2020, 31 : 352 - 372