Magnitude sensitivity analysis for parameter identification applied to an autonomous underwater vehicle

被引:0
作者
Elmezain, Mohamed [1 ]
El-Bayoumi, Gamal [1 ]
Elhadidi, Basman [2 ]
Mohamady, Osama [1 ]
机构
[1] Cairo Univ, Dept Aerosp Engn, Giza, Egypt
[2] Nazarbayev Univ, Sch Digital Sci & Engn, Astana, Kazakhstan
关键词
Parameter identification; Estimation; Identifiability; Sensitivity; Extended Kalman filter; Autonomous underwater vehicles; HYDRODYNAMIC COEFFICIENTS; AUV; DESIGN;
D O I
10.1016/j.oceaneng.2024.118918
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A novel "identifiability"technique, named magnitude sensitivity analysis, is presented to determine identifiable parameters within a dataset. Parameters with high sensitivity can be successfully identified, whereas parameters with low sensitivity can be omitted, reducing system complexity. The technique is less computationally intensive compared to other published methods, preserves the physical nature of parameters, and is applicable in real-time analysis. Verification of the technique was tested for a simulated mass-spring-damper model with a step and sinusoidal forcing inputs to demonstrate the determination of identifiable parameters from different datasets. For the two forcing scenarios, magnitude sensitivity analysis predicted parameters with high and low sensitivity, which were then estimated using an extended Kalman filter. High sensitivity parameters yielded values with errors as low as 0.4%, whereas low sensitivity parameters yielded values with errors up to 533%. The technique was then applied to experimental data measured from an autonomous underwater vehicle (AUV) undergoing pitch maneuvers. The magnitude sensitivity analysis was used to reduce the nonlinear system model governing the AUV before proceeding with the estimation of the high sensitivity parameters. Results conclude that the estimation of the high sensitivity parameter deviated by 4% compared to the initial guess parameter from a numerical simulation.
引用
收藏
页数:9
相关论文
共 27 条
  • [1] AAGE C, 1994, OCEANS 94 - OCEANS ENGINEERING FOR TODAY'S TECHNOLOGY AND TOMORROW'S PRESERVATION, PROCEEDINGS, VOL 3, pC425
  • [2] CLASSIFICATION OF HYDRODYNAMIC COEFFICIENTS OF AUTONOMOUS UNDERWATER VEHICLES BASED ON SENSITIVITY ANALYSES IN STANDARD MANEUVERS
    Abolvafaie, Mahnaz
    Koofigar, Hamid Reza
    Malekzadeh, Maryam
    [J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2018, 26 (01): : 1 - 10
  • [3] A TRAJECTORY SENSITIVITY METHOD FOR THE IDENTIFICATION OF NONLINEAR EXCITATION SYSTEM MODELS
    BENCHLUCH, SM
    CHOW, JH
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 1993, 8 (02) : 159 - 164
  • [4] Blanchard E.D., 2007, PARAMETER ESTIMATION
  • [5] Estimation of AUV Hydrodynamic Coefficients Using Analytical and System Identification Approaches
    Cardenas, Persing
    de Barros, Ettore A.
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2020, 45 (04) : 1157 - 1176
  • [6] De Barros E., 2004, IFAC Proc., V37, P369
  • [7] Investigation of a method for predicting AUV derivatives
    de Barros, E. A.
    Pascoal, A.
    de Sa, E.
    [J]. OCEAN ENGINEERING, 2008, 35 (16) : 1627 - 1636
  • [8] Determining identifiable parameter combinations using subset profiling
    Eisenberg, Marisa C.
    Hayashi, Michael A. L.
    [J]. MATHEMATICAL BIOSCIENCES, 2014, 256 : 116 - 126
  • [9] Eng YH, 2008, LECT NOTES ENG COMP, P1244
  • [10] Fossen T.I., 2011, Handbook of Marine Craft Hydro, DOI DOI 10.1002/9781119994138