Prediction of Glioma enhancement pattern using a MRI radiomics-based model

被引:0
作者
Wang, Wen [1 ,2 ]
Wang, Yu [1 ,2 ]
Meng, Wenyi [1 ]
Guo, Erjia [1 ]
He, Huishan [1 ]
Huang, Guanglong [3 ]
He, Wenle [4 ]
Wu, Yuankui [1 ,2 ]
机构
[1] Southern Med Univ, Nanfang Hosp, Dept Med Imaging, 1838 Guangzhou Ave North, Guangzhou 510515, Guangdong, Peoples R China
[2] Southern Med Univ, Sch Clin Med 1, Guangzhou, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Dept Neurosurg, Guangzhou, Peoples R China
[4] Jinan Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou, Guangdong, Peoples R China
关键词
enhancement pattern; Glioma; MRI; radiomics; T2-FLAIR; CONTRAST AGENTS; GRADE; CLASSIFICATION; GUIDELINE; TUMORS;
D O I
10.1097/MD.0000000000039512
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Contrast-MRI scans carry risks associated with the chemical contrast agents. Accurate prediction of enhancement pattern of gliomas has potential in avoiding contrast agent administration to patients. This study aimed to develop a machine learning radiomics model that can accurately predict enhancement pattern of gliomas based on T2 fluid attenuated inversion recovery images. A total of 385 cases of pathologically-proven glioma were retrospectively collected with preoperative magnetic resonance T2 fluid attenuated inversion recovery images, which were divided into enhancing and non-enhancing groups. Predictive radiomics models based on machine learning with 6 different classifiers were established in the training cohort (n = 201), and tested both in the internal validation cohort (n = 85) and the external validation cohort (n = 99). Receiver-operator characteristic curve was used to assess the predictive performance of these radiomics models. This study demonstrated that the radiomics model comprising of 15 features using the Gaussian process as a classifier had the highest predictive performance in both the training cohort and the internal validation cohort, with the area under the curve being 0.88 and 0.80, respectively. This model showed an area under the curve, sensitivity, specificity, positive predictive value and negative predictive value of 0.81, 0.98, 0.61, 0.82, 0.76 and 0.96, respectively, in the external validation cohort. This study suggests that the T2-FLAIR-based machine learning radiomics model can accurately predict enhancement pattern of glioma.
引用
收藏
页数:7
相关论文
共 31 条
[1]  
[Anonymous], 2017, EMAs final opinion confirms restrictions on use of linear gadolinium agents in body scans
[2]   Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging-a comprehensive overview [J].
Delgado, Anna Falk ;
Van Westen, Danielle ;
Nilsson, Markus ;
Knutsson, Linda ;
Sundgren, Pia C. ;
Larsson, Elna-Marie ;
Delgado, Alberto Falk .
INSIGHTS INTO IMAGING, 2019, 10 (01)
[3]   Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI [J].
Gong, Enhao ;
Pauly, John M. ;
Wintermark, Max ;
Zaharchuk, Greg .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (02) :330-340
[4]   Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications [J].
Haller, Sven ;
Zaharchuk, Greg ;
Thomas, David L. ;
Lovblad, Karl-Olof ;
Barkhof, Frederik ;
Golay, Xavier .
RADIOLOGY, 2016, 281 (02) :337-356
[5]   Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation [J].
Kang, Daesung ;
Park, Ji Eun ;
Kim, Young-Hoon ;
Kim, Jeong Hoon ;
Oh, Joo Young ;
Kim, Jungyoun ;
Kim, Yikyung ;
Kim, Sung Tae ;
Kim, Ho Sung .
NEURO-ONCOLOGY, 2018, 20 (09) :1251-1261
[6]   Evidence-based recommendations on categories for extent of resection in diffuse glioma [J].
Karschnia, Philipp ;
Vogelbaum, Michael A. ;
van den Bent, Martin ;
Cahill, Daniel P. ;
Bello, Lorenzo ;
Narita, Yoshitaka ;
Berger, Mitchel S. ;
Weller, Michael ;
Tonn, Joerg-Christian .
EUROPEAN JOURNAL OF CANCER, 2021, 149 :23-33
[7]   Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features [J].
Kickingereder, Philipp ;
Bonekamp, David ;
Nowosielski, Martha ;
Kratz, Annekathrin ;
Sill, Martin ;
Burth, Sina ;
Wick, Antje ;
Eidel, Oliver ;
Schlemmer, Heinz-Peter ;
Radbruch, Alexander ;
Debus, Jurgen ;
Herold-Mende, Christel ;
Unterberg, Andreas ;
Jones, David ;
Pfister, Stefan .
RADIOLOGY, 2016, 281 (03) :907-918
[8]   Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium? A Feasibility Study [J].
Kleesiek, Jens ;
Morshuis, Jan Nikolas ;
Isensee, Fabian ;
Deike-Hofmann, Katerina ;
Paech, Daniel ;
Kickingereder, Philipp ;
Koethe, Ullrich ;
Rother, Carsten ;
Forsting, Michael ;
Wick, Wolfgang ;
Bendszus, Martin ;
Schlemmer, Heinz-Peter ;
Radbruch, Alexander .
INVESTIGATIVE RADIOLOGY, 2019, 54 (10) :653-660
[9]   A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research [J].
Koo, Terry K. ;
Li, Mae Y. .
JOURNAL OF CHIROPRACTIC MEDICINE, 2016, 15 (02) :155-163
[10]   The diagnostic value of contrast enhancement on MRI in diffuse and anaplastic gliomas [J].
Krigers, Aleksandrs ;
Demetz, Matthias ;
Grams, Astrid E. ;
Thome, Claudius ;
Freyschlag, Christian F. .
ACTA NEUROCHIRURGICA, 2022, 164 (08) :2035-2040