Turbidity assessment in coastal regions combining machine learning, numerical modeling, and remote sensing

被引:1
|
作者
Memari, Saeed [1 ]
Phanikumar, Mantha S. [1 ,2 ]
Boddeti, Vishnu [3 ]
Das, Narendra [1 ,4 ]
机构
[1] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
[2] MSU AgBioRes, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA
关键词
hydrodynamic modeling; machine learning; remote sensing; solute transport; transfer learning; water turbidity; WATER-QUALITY; SUMMER CIRCULATION; MAPPING TURBIDITY; SAGINAW BAY; RIVER; EXCHANGE; FLUXES; OCEAN;
D O I
10.2166/hydro.2024.110
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning models for water quality prediction often face challenges due to insufficient data and uneven spatial-temporal distributions. To address these issues, we introduce a framework combining machine learning, numerical modeling, and remote sensing imagery to predict coastal water turbidity, a key water quality proxy. This approach was tested in the Great Lakes region, specifically Cleveland Harbor, Lake Erie. We trained models using observed and synthetic data from 3D numerical models and tested them against in situ and remote sensing data from PlanetLabs' Dove satellites. High-resolution (HR) data improved prediction accuracy, with RMSE values of 0.154 and 0.146 log10(FNU) and R2 values of 0.92 and 0.93 for validation and test datasets, respectively. Our study highlights the importance of unified turbidity measures for data comparability. The machine learning model demonstrated skill in predicting turbidity through transfer learning, indicating applicability in diverse, data-scarce regions. This approach can enhance decision support systems for coastal environments by providing accurate, timely predictions of water quality variables. Our methodology offers robust strategies for turbidity and water quality monitoring and holds significant potential for improving input data quality for numerical models and developing predictive models from remote sensing data.
引用
收藏
页码:2581 / 2600
页数:20
相关论文
共 50 条
  • [21] A review of machine learning, remote sensing, and statistical methods for reservoir water quality assessment
    Nikoo, Mohammad Reza
    Al Aamri, Abrar
    Etri, Talal
    Al-Rawas, Ghazi
    JOURNAL OF HYDROLOGY, 2025, 659
  • [22] Robust remote sensing retrieval of key eutrophication indicators in coastal waters based on explainable machine learning
    Zhu, Liudi
    Cui, Tingwei
    Runa, A.
    Pan, Xinliang
    Zhao, Wenjing
    Xiang, Jinzhao
    Cao, Mengmeng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 211 : 262 - 280
  • [23] Machine learning approach to predict the turbidity of Saki Lake, Telangana, India, using remote sensing data
    Devi, P. Durga
    Mamatha, G.
    Measurement: Sensors, 2024, 33
  • [24] Tracking the environmental impacts of ecological engineering on coastal wetlands with numerical modeling and remote sensing
    Wu, Wenting
    Yang, Zhaoqing
    Chen, Chunpeng
    Tian, Bo
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 302
  • [25] Machine Learning Methods for Remote Sensing Applications: An Overview
    Schulz, Karsten
    Haensch, Ronny
    Soergel, Uwe
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS IX, 2018, 10790
  • [26] Remote Sensing and Machine Learning for Safer Railways: A Review
    Helmi, Wesam
    Bridgelall, Raj
    Askarzadeh, Taraneh
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [27] Streamlining Machine Learning in Mobile Devices for Remote Sensing
    Coronel, Andrei D.
    Estuar, Ma. Regina E.
    Garcia, Kyle Kristopher P.
    Dela Cruz, Bon Lemuel T.
    Torrijos, Jose Emmanuel
    Lim, Hadrian Paulo M.
    Abu, Patricia Angela R.
    Victorino, John Noel C.
    FIFTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2017), 2017, 10444
  • [28] OpenStreetMap: Challenges and Opportunities in Machine Learning and Remote Sensing
    Vargas-Munoz, John E.
    Srivastava, Shivangi
    Tuia, Devis
    Falcao, Alexandre X.
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (01) : 184 - 199
  • [29] Integration of Machine Learning and Remote Sensing for Water Quality Monitoring and Prediction: A Review
    Mohan, Shashank
    Kumar, Brajesh
    Nejadhashemi, A. Pouyan
    SUSTAINABILITY, 2025, 17 (03)
  • [30] Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
    Raza, Aamir
    Shahid, Muhammad Adnan
    Zaman, Muhammad
    Miao, Yuxin
    Huang, Yanbo
    Safdar, Muhammad
    Maqbool, Sheraz
    Muhammad, Nalain E.
    REMOTE SENSING, 2025, 17 (05)