Turbidity assessment in coastal regions combining machine learning, numerical modeling, and remote sensing
被引:1
|
作者:
Memari, Saeed
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Memari, Saeed
[1
]
Phanikumar, Mantha S.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
MSU AgBioRes, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Phanikumar, Mantha S.
[1
,2
]
Boddeti, Vishnu
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Boddeti, Vishnu
[3
]
Das, Narendra
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Das, Narendra
[1
,4
]
机构:
[1] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
[2] MSU AgBioRes, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA
Machine learning models for water quality prediction often face challenges due to insufficient data and uneven spatial-temporal distributions. To address these issues, we introduce a framework combining machine learning, numerical modeling, and remote sensing imagery to predict coastal water turbidity, a key water quality proxy. This approach was tested in the Great Lakes region, specifically Cleveland Harbor, Lake Erie. We trained models using observed and synthetic data from 3D numerical models and tested them against in situ and remote sensing data from PlanetLabs' Dove satellites. High-resolution (HR) data improved prediction accuracy, with RMSE values of 0.154 and 0.146 log10(FNU) and R2 values of 0.92 and 0.93 for validation and test datasets, respectively. Our study highlights the importance of unified turbidity measures for data comparability. The machine learning model demonstrated skill in predicting turbidity through transfer learning, indicating applicability in diverse, data-scarce regions. This approach can enhance decision support systems for coastal environments by providing accurate, timely predictions of water quality variables. Our methodology offers robust strategies for turbidity and water quality monitoring and holds significant potential for improving input data quality for numerical models and developing predictive models from remote sensing data.
机构:
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, WuhanState Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan
Guan G.
Xiong F.
论文数: 0引用数: 0
h-index: 0
机构:
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, WuhanState Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan
Xiong F.
Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering,
40
(04):
: 194
-
203
机构:
Unisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, BrazilUnisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, Brazil
Kupssinsku, Lucas Silveira
Guimaraes, Taina Thomassim
论文数: 0引用数: 0
h-index: 0
机构:
Unisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, BrazilUnisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, Brazil
Guimaraes, Taina Thomassim
de Souza, Eniuce Menezes
论文数: 0引用数: 0
h-index: 0
机构:
State Univ Maringa PR, Dept Stat, BR-87020900 Maringa, Parana, BrazilUnisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, Brazil
de Souza, Eniuce Menezes
Zanotta, Daniel C.
论文数: 0引用数: 0
h-index: 0
机构:
Unisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, BrazilUnisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, Brazil
Zanotta, Daniel C.
Veronez, Mauricio Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Unisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, BrazilUnisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, Brazil
Veronez, Mauricio Roberto
Gonzaga, Luiz, Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Unisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, BrazilUnisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, Brazil
Gonzaga, Luiz, Jr.
Mauad, Frederico Fabio
论文数: 0引用数: 0
h-index: 0
机构:
Sao Carlos Engn Sch, BR-13566590 Sao Carlos, BrazilUnisinos Univ, Grad Programme Appl Comp, Vizlab, X Real & Geoinformat Lab, BR-93022750 Sao Leopoldo, Brazil