Turbidity assessment in coastal regions combining machine learning, numerical modeling, and remote sensing

被引:1
|
作者
Memari, Saeed [1 ]
Phanikumar, Mantha S. [1 ,2 ]
Boddeti, Vishnu [3 ]
Das, Narendra [1 ,4 ]
机构
[1] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
[2] MSU AgBioRes, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA
关键词
hydrodynamic modeling; machine learning; remote sensing; solute transport; transfer learning; water turbidity; WATER-QUALITY; SUMMER CIRCULATION; MAPPING TURBIDITY; SAGINAW BAY; RIVER; EXCHANGE; FLUXES; OCEAN;
D O I
10.2166/hydro.2024.110
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning models for water quality prediction often face challenges due to insufficient data and uneven spatial-temporal distributions. To address these issues, we introduce a framework combining machine learning, numerical modeling, and remote sensing imagery to predict coastal water turbidity, a key water quality proxy. This approach was tested in the Great Lakes region, specifically Cleveland Harbor, Lake Erie. We trained models using observed and synthetic data from 3D numerical models and tested them against in situ and remote sensing data from PlanetLabs' Dove satellites. High-resolution (HR) data improved prediction accuracy, with RMSE values of 0.154 and 0.146 log10(FNU) and R2 values of 0.92 and 0.93 for validation and test datasets, respectively. Our study highlights the importance of unified turbidity measures for data comparability. The machine learning model demonstrated skill in predicting turbidity through transfer learning, indicating applicability in diverse, data-scarce regions. This approach can enhance decision support systems for coastal environments by providing accurate, timely predictions of water quality variables. Our methodology offers robust strategies for turbidity and water quality monitoring and holds significant potential for improving input data quality for numerical models and developing predictive models from remote sensing data.
引用
收藏
页码:2581 / 2600
页数:20
相关论文
共 50 条
  • [11] An Integrated Monitoring System for Coastal and Riparian Areas Based on Remote Sensing and Machine Learning
    Tzepkenlis, Anastasios
    Grammalidis, Nikos
    Kontopoulos, Christos
    Charalampopoulou, Vasiliki
    Kitsiou, Dimitra
    Pataki, Zoi
    Patera, Anastasia
    Nitis, Theodoros
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (09)
  • [12] Machine learning in geosciences and remote sensing
    David J.Lary
    Amir H.Alavi
    Amir H.Gandomi
    Annette L.Walker
    Geoscience Frontiers, 2016, (01) : 3 - 10
  • [13] Machine learning in geosciences and remote sensing
    Lary, David J.
    Alavi, Amir H.
    Gandomi, Amir H.
    Walker, Annette L.
    GEOSCIENCE FRONTIERS, 2016, 7 (01) : 3 - 10
  • [14] Monitoring channel ice conditions in cold regions using remote sensing and machine learning
    Guan G.
    Xiong F.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 40 (04): : 194 - 203
  • [15] Combining remote sensing analysis with machine learning to evaluate short-term coastal evolution trend in the shoreline of Venice
    Fogarin, S.
    Zanetti, M.
    Dal Barco, M. K.
    Zennaro, F.
    Furlan, E.
    Torresan, S.
    Pham, H. V.
    Critto, A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 859
  • [16] Remote sensing-enabled machine learning for river water quality modeling under multidimensional uncertainty
    Rahat, Saiful Haque
    Steissberg, Todd
    Chang, Won
    Chen, Xi
    Mandavya, Garima
    Tracy, Jacob
    Wasti, Asphota
    Atreya, Gaurav
    Saki, Shah
    Bhuiyan, Md Abul Ehsan
    Ray, Patrick
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 898
  • [17] Coastal flood vulnerability assessment, a satellite remote sensing and modeling approach
    Mendoza, E. T.
    Salameh, E.
    Sakho, I.
    Turki, I
    Almar, R.
    Ojeda, E.
    Deloffre, J.
    Frappart, F.
    Laignel, B.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 29
  • [18] A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning
    Kupssinsku, Lucas Silveira
    Guimaraes, Taina Thomassim
    de Souza, Eniuce Menezes
    Zanotta, Daniel C.
    Veronez, Mauricio Roberto
    Gonzaga, Luiz, Jr.
    Mauad, Frederico Fabio
    SENSORS, 2020, 20 (07)
  • [19] Predicting turbidity dynamics in small reservoirs in central Kenya using remote sensing and machine learning
    Steinbach, Stefanie
    Bartels, Anna
    Rienow, Andreas
    Kuria, Bartholomew Thiong'o
    Zwart, Sander Jaap
    Nelson, Andrew
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [20] Improving flood hazard susceptibility assessment by integrating hydrodynamic modeling with remote sensing and ensemble machine learning
    Ahmad, Izhar
    Farooq, Rashid
    Ashraf, Muhammad
    Waseem, Muhammad
    Shangguan, Donghui
    NATURAL HAZARDS, 2025, : 7839 - 7868