Progress and challenges in engineering the atomic structure of oxygen electrocatalysts for zinc-air batteries

被引:5
作者
Choi, Jinyeong [1 ,2 ,3 ]
Jang, Hyeokjun [1 ,2 ,3 ]
Park, Jihan [1 ,2 ,3 ]
Han, Duho [1 ,2 ,3 ]
Lahiri, Abhishek [4 ]
Oh, Pilgun [5 ,6 ]
Park, Joohyuk [7 ]
Park, Minjoon [1 ,2 ,3 ]
机构
[1] Pusan Natl Univ, Dept Nanoenergy Engn, 50,Busan Daehak Ro 63 Beon Gil 2, Busan 46241, South Korea
[2] Pusan Natl Univ, Res Ctr Energy Convergence Technol, Busandaehak Ro 63Beon Gil 2, Busan 46241, South Korea
[3] Pusan Natl Univ, Dept Nano Fus Technol, Busandaehak Ro 63Beon Gil 2, Busan 46241, South Korea
[4] Brunel Univ London, Dept Chem Engn, Uxbridge UB8 3PH, England
[5] Pukyong Natl Univ, Dept Smart Green Technol Engn, Busan 48547, South Korea
[6] Pukyong Natl Univ, Dept Nanotechnol Engn, Busan 48547, South Korea
[7] Keimyung Univ, Dept Adv Mat Engn, 1095 Dalgubeol Daero, Daegu 42601, South Korea
基金
新加坡国家研究基金会;
关键词
Zinc air battery; Electrocatalyst; Oxygen; Atomic structure; Energy; ELECTRONIC-STRUCTURE; HIGHLY EFFICIENT; SPIN-STATE; CARBON; SITES; EVOLUTION; SURFACE; VACANCIES; CATALYST; CATHODE;
D O I
10.1016/j.cej.2024.154561
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rechargeable zinc-air batteries are presently regarded as promising candidates for next-generation energy storage systems, owing to their high specific energy density, environmental-friendliness, and safety. Despite these advantages, zinc-air batteries still suffer from low energy efficiency and poor cycle life due to sluggish electrochemical kinetics of oxygen species. Therefore, modification strategies for catalysts to improve the performance of rechargeable zinc-air batteries are necessary. This review focuses on strategies used for modifying catalysts from nanoarchitecture and electronic structural perspectives. In the review, we first describe the overall mechanism and component of the zinc-air battery. Then, we analyze the effects of charge redistribution and enhanced electron transport within the molecular structures of the air cathode by forming heterogeneous nanostructures. We also analyze the relationship between modulation of d-band center of the catalyst and the coordination environment of atom within the air cathode. We also describe the strategies for incorporating vacancies in the molecular structure to improve the performance of air cathodes. Finally, we provide a general perspective on the overall limitations of current zinc-air batteries.
引用
收藏
页数:17
相关论文
共 135 条
[91]   Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc-air batteries [J].
Wang, Congwei ;
Zhao, Huifang ;
Wang, Jie ;
Zhao, Zheng ;
Cheng, Miao ;
Duan, Xiaoyong ;
Zhang, Qin ;
Wang, Junying ;
Wang, Junzhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (04) :1451-1458
[92]   Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries [J].
Wang, Huan ;
Xu, Li ;
Deng, Daijie ;
Liu, Xiaozhi ;
Li, Henan ;
Su, Dong .
JOURNAL OF ENERGY CHEMISTRY, 2023, 76 :359-367
[93]   Synergistic regulation of nickel doping/hierarchical structure in cobalt sulfide for high performance zinc-air battery [J].
Wang, Jie ;
Xu, Jinxiao ;
Guo, Xuyun ;
Shen, Tao ;
Xuan, Cuijuan ;
Tian, Baoling ;
Wen, Zhaorui ;
Zhu, Ye ;
Wang, Deli .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 298
[94]   Water Dissociation Kinetic-Oriented Design of Nickel Sulfides via Tailored Dual Sites for Efficient Alkaline Hydrogen Evolution [J].
Wang, Jinsong ;
Zhang, Zhengfu ;
Song, Haoran ;
Zhang, Bao ;
Liu, Jia ;
Shai, Xuxia ;
Miao, Ling .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (09)
[95]   Dual-electrolyte aluminum/air microfluidic fuel cell with electrolyte-recirculation [J].
Wang, Lei ;
Cheng, Rui ;
Wang, Wentao ;
Yang, Guandong ;
Leung, Michael K. H. ;
Liu, Fude ;
Feng, Shien-Ping .
ELECTROCHIMICA ACTA, 2021, 388 (388)
[96]   Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott-Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc-air batteries [J].
Wang, Nan ;
Ning, Shunlian ;
Yu, Xiaolong ;
Chen, Di ;
Li, Zilong ;
Xu, Jinchang ;
Meng, Hui ;
Zhao, Dengke ;
Li, Ligui ;
Liu, Qiming ;
Lu, Bingzhang ;
Chen, Shaowei .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 302
[97]   N, S codoped carbon matrix-encapsulated CoFe/Co0.2Fe0.8S heterostructure as a highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries [J].
Wang, Peng ;
Bai, Ping ;
Mu, Jiarong ;
Jing, Jianfang ;
Wang, Lei ;
Su, Yiguo .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 642 :1-12
[98]   Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn-Air Batteries [J].
Wang, Qichen ;
Ji, Yujin ;
Lei, Yongpeng ;
Wang, Yaobing ;
Wang, Yingde ;
Li, Youyong ;
Wang, Shuangyin .
ACS ENERGY LETTERS, 2018, 3 (05) :1183-+
[99]   Conjugated polymerized bimetallic phthalocyanine based electrocatalyst with Fe-N4/Co-N4 dual-sites synergistic effect for zinc-air battery [J].
Wang, Shuaifeng ;
Li, Zhongfang ;
Duan, Wenjie ;
Sun, Peng ;
Wang, Jigang ;
Liu, Qiang ;
Zhang, Lei ;
Zhuang, Yanqiong .
JOURNAL OF ENERGY CHEMISTRY, 2023, 86 :41-53
[100]   Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes [J].
Wang, Yongcheng ;
Zhou, Tong ;
Jiang, Kun ;
Da, Peimei ;
Peng, Zheng ;
Tang, Jing ;
Kong, Biao ;
Cai, Wen-Bin ;
Yang, Zhongqin ;
Zheng, Gengfeng .
ADVANCED ENERGY MATERIALS, 2014, 4 (16)