Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors

被引:2
作者
Sabeghi, Paniz [1 ]
Kinkar, Ketki K. [2 ]
Castaneda, Gloria del Rosario [3 ]
Eibschutz, Liesl S. [1 ]
Fields, Brandon K. K. [4 ]
Varghese, Bino A. [1 ]
Patel, Dakshesh B. [1 ]
Gholamrezanezhad, Ali [1 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA USA
[3] Univ Southern Calif, Keck Sch Med, Los Angeles, CA USA
[4] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA USA
来源
FRONTIERS IN RADIOLOGY | 2024年 / 4卷
关键词
artificial intelligence; machine learning; deep learning; musculoskeletal; sarcoma; LESIONS; MRI;
D O I
10.3389/fradi.2024.1332535
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent advancements in artificial intelligence (AI) and machine learning offer numerous opportunities in musculoskeletal radiology to potentially bolster diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have the capability to assist radiologists in many tasks ranging from image segmentation, lesion detection, and more. In bone and soft tissue tumor imaging, radiomics and deep learning show promise for malignancy stratification, grading, prognostication, and treatment planning. However, challenges such as standardization, data integration, and ethical concerns regarding patient data need to be addressed ahead of clinical translation. In the realm of musculoskeletal oncology, AI also faces obstacles in robust algorithm development due to limited disease incidence. While many initiatives aim to develop multitasking AI systems, multidisciplinary collaboration is crucial for successful AI integration into clinical practice. Robust approaches addressing challenges and embodying ethical practices are warranted to fully realize AI's potential for enhancing diagnostic accuracy and advancing patient care.
引用
收藏
页数:6
相关论文
共 48 条
[1]   X-ray and MRI Correlation of Bone Tumors Using Histopathology As Gold Standard [J].
Azad, Hina ;
Ahmed, Aliya ;
Zafar, Ibtesam ;
Bhutta, Muzammil Rasheed ;
Rabbani, Muhammad Ali ;
Raj, K. C. Himesh .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (07)
[2]   Supervised Machine-Learning Enables Segmentation and Evaluation of Heterogeneous Post-treatment Changes in Multi-Parametric MRI of Soft-Tissue Sarcoma [J].
Blackledge, Matthew D. ;
Winfield, Jessica M. ;
Miah, Aisha ;
Strauss, Dirk ;
Thway, Khin ;
Morgan, Veronica A. ;
Collins, David J. ;
Koh, Dow-Mu ;
Leach, Martin O. ;
Messiou, Christina .
FRONTIERS IN ONCOLOGY, 2019, 9
[3]   Discrimination of lipoma from atypical lipomatous tumor/well-differentiated liposarcoma using magnetic resonance imaging radiomics combined with machine learning [J].
Cay, Nurdan ;
Mendi, Bokebatur Ahmet Rasit ;
Batur, Halitcan ;
Erdogan, Fazli .
JAPANESE JOURNAL OF RADIOLOGY, 2022, 40 (09) :951-960
[4]   Deep Learning for Classification of Bone Lesions on Routine MRI [J].
Eweje, Feyisope R. ;
Bao, Bingting ;
Wu, Jing ;
Dalal, Deepa ;
Liao, Wei-hua ;
He, Yu ;
Luo, Yongheng ;
Lu, Shaolei ;
Zhang, Paul ;
Peng, Xianjing ;
Sebro, Ronnie ;
Bai, Harrison X. ;
States, Lisa .
EBIOMEDICINE, 2021, 68
[5]   Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach [J].
Fields, Brandon K. K. ;
Demirjian, Natalie L. ;
Cen, Steven Y. ;
Varghese, Bino A. ;
Hwang, Darryl H. ;
Lei, Xiaomeng ;
Desai, Bhushan ;
Duddalwar, Vinay ;
Matcuk, George R., Jr. .
MOLECULAR IMAGING AND BIOLOGY, 2023, 25 (04) :776-787
[6]   Whole-tumor 3D volumetric MRI-based radiomics approach for distinguishing between benign and malignant soft tissue tumors [J].
Fields, Brandon K. K. ;
Demirjian, Natalie L. ;
Hwang, Darryl H. ;
Varghese, Bino A. ;
Cen, Steven Y. ;
Lei, Xiaomeng ;
Desai, Bhushan ;
Duddalwar, Vinay ;
Matcuk, George R., Jr. .
EUROPEAN RADIOLOGY, 2021, 31 (11) :8522-8535
[7]   Quantitative magnetic resonance imaging (q-MRI) for the assessment of soft-tissue sarcoma treatment response: a narrative case review of technique development [J].
Fields, Brandon K. K. ;
Hwang, Darryl ;
Cen, Steven ;
Desai, Bhushan ;
Gulati, Mittul ;
Hu, James ;
Duddalwar, Vinay ;
Varghese, Bino ;
Matcuk, George R., Jr. .
CLINICAL IMAGING, 2020, 63 :83-93
[8]   Prediction of lipomatous soft tissue malignancy on MRI: comparison between machine learning applied to radiomics and deep learning [J].
Fradet, Guillaume ;
Ayde, Reina ;
Bottois, Hugo ;
El Harchaoui, Mohamed ;
Khaled, Wassef ;
Drape, Jean-Luc ;
Pilleul, Frank ;
Bouhamama, Amine ;
Beuf, Olivier ;
Leporq, Benjamin .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2022, 6 (01)
[9]   Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology An Overview of Novel MRI- and CT-Based Approaches [J].
Fritz, Benjamin ;
Yi, Paul H. H. ;
Kijowski, Richard ;
Fritz, Jan .
INVESTIGATIVE RADIOLOGY, 2023, 58 (01) :3-13
[10]   Is Artificial Intelligence the New Friend for Radiologists? A Review Article [J].
Gampala, Sravani ;
Vankeshwaram, Varun ;
Gadula, Satya Siva P. .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (10)