A defect detection method for industrial aluminum sheet surface based on improved YOLOv8 algorithm

被引:2
|
作者
Wang, Luyang [1 ,2 ]
Zhang, Gongxue [1 ]
Wang, Weijun [2 ]
Chen, Jinyuan [2 ]
Jiang, Xuyao [2 ]
Yuan, Hai [2 ]
Huang, Zucheng [2 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Mech & Elect Engn, Xian, Peoples R China
[2] Guangzhou Inst Adv Technol, Guangzhou, Peoples R China
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
defect detection; YOLOv8; algorithm; C2f-DSConv module; DyHead dynamic detection head network; small target detection layer;
D O I
10.3389/fphy.2024.1419998
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In industrial aluminum sheet surface defect detection, false detection, missed detection, and low efficiency are prevalent challenges. Therefore, this paper introduces an improved YOLOv8 algorithm to address these issues. Specifically, the C2f-DSConv module incorporated enhances the network's feature extraction capabilities, and a small target detection layer (160 x 160) improves the recognition of small targets. Besides, the DyHead dynamic detection head augments target representation, and MPDIoU replaces the regression loss function to refine detection accuracy. The improved algorithm is named YOLOv8n-DSDM, with experimental evaluations on an industrial aluminum sheet surface defect dataset demonstrating its effectiveness. YOLOv8n-DSDM achieves an average mean average precision (mAP50%) of 94.7%, demonstrating a 3.5% improvement over the original YOLOv8n. With a single-frame detection time of 2.5 ms and a parameter count of 3.77 M, YOLOv8n-DSDM meets the real-time detection requirements for industrial applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improved YOLOv8 Algorithm for Industrial Surface Defect Detection
    Su, Jia
    Jia, Ze
    Qin, Yichang
    Zhang, Jianyan
    Computer Engineering and Applications, 2024, 60 (14) : 187 - 196
  • [2] Improved Steel Surface Defect Detection Algorithm Based on YOLOv8
    You, Congzhe
    Kong, Haozheng
    IEEE ACCESS, 2024, 12 : 99570 - 99577
  • [3] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    IEEE ACCESS, 2024, 12 : 44984 - 44997
  • [4] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [5] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    TEXTILE RESEARCH JOURNAL, 2025, 95 (3-4) : 235 - 251
  • [6] Textile Defect Detection Algorithm Based on the Improved YOLOv8
    Song, Wenfei
    Lang, Du
    Zhang, Jiahui
    Zheng, Meilian
    Li, Xiaoming
    IEEE ACCESS, 2025, 13 : 11217 - 11231
  • [7] Improved Road Defect Detection Algorithm Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Computer Engineering and Applications, 2024, 60 (17) : 179 - 190
  • [8] A Road Defect Detection Algorithm Based on Improved YOLOv8
    Niu, Yiqing
    Cao, Jianrong
    Wang, Yuanchang
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT III, 2025, 2183 : 369 - 383
  • [9] Surface defect detection method of aluminium profile based on improved YOLOv8
    Liu, Dongliang
    Li, Yan
    Sun, Hao
    Niu, Jinxing
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [10] Steel surface defect detection based on improved YOLOv8
    Lu, Xin-ya
    Qu, Mei-xia
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):