MicroSeg: Multi-scale fusion learning for microaneurysms segmentation

被引:0
作者
Wu, Yun [1 ]
Jiao, Ge [1 ,2 ]
机构
[1] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China
[2] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China
关键词
Deep learning; Microaneurysms segmentation; Multi-scale fusion; Image pre-processing; DEEP; NETWORKS;
D O I
10.1016/j.bspc.2024.106700
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microaneurysms (MAs) are the initial clinical signs of diabetic retinopathy (DR), which is crucial for the early prevention and treatment of DR. However, detecting MAs in fundus images is challenging due to their presence as small, blood-colored dots amidst complex noise. Traditional single-stage Convolutional Neural Networks (CNN) struggle to extract sufficient contextual information for effective detection. To overcome this, we introduce MicroSeg, a multi-scale fusion learning model with a U-shaped structure. Utilizing the Swin Transformer as the backbone, we design two innovative modules: the Multi-Scale Pyramid Fusion (MSPF) and the Weight-sharing Parallel Dilated Convolutions (WPDC), which reconstruct skip connections to enhance cross-scale complementarity and compensate for underlying information gaps. Additionally, we propose the High Pass Overlay (HPO) preprocessing method to augment MAs feature representation. Our model demonstrates superior performance, achieving Free-response Receiver Operating Characteristic (FROC) curve scores of 0.535 on the E-Ophtha-MA dataset and 0.259 on the Dataset for Diabetic Retinopathy (DDR), outperforming comparable state-of-the-art (SOTA) end-to-end algorithms.
引用
收藏
页数:11
相关论文
共 62 条
  • [1] Identification and classification of microaneurysms for early detection of diabetic retinopathy
    Akram, M. Usman
    Khalid, Shehzad
    Khan, Shoab A.
    [J]. PATTERN RECOGNITION, 2013, 46 (01) : 107 - 116
  • [2] BUNCH PC, 1978, J APPL PHOTOGR ENG, V4, P166
  • [3] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [4] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [5] IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045
    Cho, N. H.
    Shaw, J. E.
    Karuranga, S.
    Huang, Y.
    Fernandes, J. D. da Rocha
    Ohlrogge, A. W.
    Malanda, B.
    [J]. DIABETES RESEARCH AND CLINICAL PRACTICE, 2018, 138 : 271 - 281
  • [6] Road Extraction From High-Resolution Remote Sensing Images of Open-Pit Mine Using D-SegNeXt
    Cui, Pengzhi
    Meng, Xiangfu
    Zhang, Wenhui
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [7] Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification
    Dai, Baisheng
    Wu, Xiangqian
    Bu, Wei
    [J]. PLOS ONE, 2016, 11 (08):
  • [8] Clinical Report Guided Retinal Microaneurysm Detection With Multi-Sieving Deep Learning
    Dai, Ling
    Fang, Ruogu
    Li, Huating
    Hou, Xuhong
    Sheng, Bin
    Wu, Qiang
    Jia, Weiping
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (05) : 1149 - 1161
  • [9] TeleOphta: Machine learning and image processing methods for teleophthalmology
    Decenciere, E.
    Cazuguel, G.
    Zhang, X.
    Thibault, G.
    Klein, J. -C.
    Meyer, F.
    Marcotegui, B.
    Quellec, G.
    Lamard, M.
    Danno, R.
    Elie, D.
    Massin, P.
    Viktor, Z.
    Erginay, A.
    Lay, B.
    Chabouis, A.
    [J]. IRBM, 2013, 34 (02) : 196 - 203
  • [10] A novel automated system of discriminating Microaneurysms in fundus images
    Derwin, D. Jeba
    Selvi, S. Tamil
    Singh, O. Jeba
    Shan, B. Priestly
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 58