Global convergence of dislocation hyperbolic augmented Lagrangian algorithm for nonconvex optimization

被引:0
作者
Ramirez, Lennin Mallma [1 ,2 ]
Maculan, Nelson [1 ,3 ]
Xavier, Adilson Elias [1 ,2 ]
Xavier, Vinicius Layter [4 ,5 ]
机构
[1] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[2] Syst Engn & Comp Sci Program COPPE, Rio De Janeiro, Brazil
[3] Syst Engn & Comp Sci Program Appl Math COPPE IM, Rio De Janeiro, Brazil
[4] Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil
[5] Inst Social Med, Dept Epidemiol, Rio De Janeiro, Brazil
关键词
Dislocation hyperbolic augmented Lagrangian; nonlinear programming; global optimization; nonconvex problem; convergence; 65k05; SADDLE-POINTS;
D O I
10.1080/02331934.2024.2392019
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we present a new augmented Lagrangian type algorithm based on the dislocation hyperbolic augmented Lagrangian function (DHALF). This algorithm is called dislocation hyperbolic augmented Lagrangian algorithm (DHALA). We ensure that DHALA converges to a global solution for the inequality constrained nonconvex optimization problem. We present DHALA considering the safeguards technique and ensure the convergence of this algorithm. Finally, we present a computational experiment to show the performance of our proposed algorithm.
引用
收藏
页数:22
相关论文
共 31 条
[11]   COMBINED PRIMAL-DUAL AND PENALTY METHODS FOR CONVEX PROGRAMMING [J].
KORT, BW ;
BERTSEKAS, DP .
SIAM JOURNAL ON CONTROL, 1976, 14 (02) :268-294
[12]   Zero duality and saddle points of a class of augmented Lagrangian functions in constrained non-convex optimization [J].
Liu, Qian ;
Yang, Xinmin .
OPTIMIZATION, 2008, 57 (05) :655-667
[13]   ON THE CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS FOR CONSTRAINED GLOBAL OPTIMIZATION [J].
Luo, H. Z. ;
Sun, X. L. ;
Li, D. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1209-1230
[14]   Convergence properties of augmented Lagrangian methods for constrained global optimization [J].
Luo, Hezhi ;
Sun, Xiaoling ;
Wu, Huixian .
OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05) :763-778
[15]  
Mallma-Ramirez L., 2022, The hyperbolic augmented Lagrangian algorithm
[16]   UNCONSTRAINED LAGRANGIANS IN NONLINEAR-PROGRAMMING [J].
MANGASARIAN, OL .
SIAM JOURNAL ON CONTROL, 1975, 13 (04) :772-791
[17]  
Pereira AIPN, 2008, AIP CONF PROC, V1048, P269, DOI 10.1063/1.2990909
[18]   MODIFIED BARRIER FUNCTIONS (THEORY AND METHODS) [J].
POLYAK, R .
MATHEMATICAL PROGRAMMING, 1992, 54 (02) :177-222
[19]   Primal-dual nonlinear rescaling method for convex optimization [J].
Polyak, R ;
Griva, I .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (01) :111-156
[20]   Nonlinear rescaling vs. smoothing technique in convex optimization [J].
Polyak, RA .
MATHEMATICAL PROGRAMMING, 2002, 92 (02) :197-235