Global convergence of dislocation hyperbolic augmented Lagrangian algorithm for nonconvex optimization

被引:0
作者
Ramirez, Lennin Mallma [1 ,2 ]
Maculan, Nelson [1 ,3 ]
Xavier, Adilson Elias [1 ,2 ]
Xavier, Vinicius Layter [4 ,5 ]
机构
[1] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[2] Syst Engn & Comp Sci Program COPPE, Rio De Janeiro, Brazil
[3] Syst Engn & Comp Sci Program Appl Math COPPE IM, Rio De Janeiro, Brazil
[4] Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil
[5] Inst Social Med, Dept Epidemiol, Rio De Janeiro, Brazil
关键词
Dislocation hyperbolic augmented Lagrangian; nonlinear programming; global optimization; nonconvex problem; convergence; 65k05; SADDLE-POINTS;
D O I
10.1080/02331934.2024.2392019
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we present a new augmented Lagrangian type algorithm based on the dislocation hyperbolic augmented Lagrangian function (DHALF). This algorithm is called dislocation hyperbolic augmented Lagrangian algorithm (DHALA). We ensure that DHALA converges to a global solution for the inequality constrained nonconvex optimization problem. We present DHALA considering the safeguards technique and ensure the convergence of this algorithm. Finally, we present a computational experiment to show the performance of our proposed algorithm.
引用
收藏
页数:22
相关论文
共 31 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]   Partial spectral projected gradient method with active-set strategy for linearly constrained optimization [J].
Andretta, Marina ;
Birgin, Ernesto G. ;
Martinez, J. M. .
NUMERICAL ALGORITHMS, 2010, 53 (01) :23-52
[3]  
Bagirov A.M., 2020, PARTITIONAL CLUSTERI, V1st ed.
[4]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[5]   Complexity and performance of an Augmented Lagrangian algorithm [J].
Birgin, E. G. ;
Martinez, J. M. .
OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (05) :885-920
[6]   Global minimization using an Augmented Lagrangian method with variable lower-level constraints [J].
Birgin, E. G. ;
Floudas, C. A. ;
Martinez, J. M. .
MATHEMATICAL PROGRAMMING, 2010, 125 (01) :139-162
[7]   Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [J].
Birgin, EG ;
Castillo, RA ;
Martínez, JM .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (01) :31-55
[8]   An interior trust region approach for nonlinear minimization subject to bounds [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :418-445
[9]   An artificial fish swarm algorithm based hyperbolic augmented Lagrangian method [J].
Costa, M. Fernanda P. ;
Rocha, Ana Maria A. C. ;
Fernandes, Edite M. G. P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :868-876
[10]   Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions [J].
Fernandez, Damian .
OPTIMIZATION, 2022, 71 (01) :97-115