Using ResWnet for semantic segmentation of active wildfires from Landsat-8 imagery

被引:0
|
作者
Afsar, Rayan [1 ]
Sultana, Aqsa [2 ]
Abouzahra, Shaik N. [2 ]
Aspiras, Theus [2 ]
Asari, Vijayan K. [2 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
[2] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
来源
PATTERN RECOGNITION AND PREDICTION XXXV | 2024年 / 13040卷
关键词
Semantic segmentation; U-Net; ResWnet; deep learning; convolutional neural networks; fire; wildfire detection; Landsat-8; remote sensing; FIRE DETECTION;
D O I
10.1117/12.3016565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wildfires are a key aspect of many ecosystems, but climate change has created conditions more conducive for devastating wildfires. Thus, it is imperative that relevant agencies know where small fires occur expeditiously. Remote sensing is a key tool for active fire detection (AFD), and satellite imagery in particular is useful due to covering wide areas. Semantic segmentation architectures like U-Net have been used for AFD and have proven very effective. In this paper, we apply a unique variant of U-Net called ResWnet towards AFD, using a large global dataset. ResWnet achieved a precision of 95% and an F-Score of 94.2%, which is better than a U-Net trained on the same dataset.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Active fire detection in Landsat-8 imagery: A large-scale dataset and a deep-learning study
    de Almeida Pereira, Gabriel Henrique
    Fusioka, Andre Minoro
    Nassu, Bogdan Tomoyuki
    Minetto, Rodrigo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 171 - 186
  • [32] SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGERY USING AN ENHANCED ENCODER-DECODER ARCHITECTURE
    Aburaed, N.
    Al-Saad, M.
    Alkhatib, M. Q.
    Zitouni, M. S.
    Almansoori, S.
    Al-Ahmad, H.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 1015 - 1020
  • [33] Semantic Segmentation of Objects from Airborne Imagery
    Thuy Thi Nguyen
    Sang Viet Dinh
    Nguyen Tien Quang
    Huynh Thi Thanh Binh
    2017 FOURTH ASIAN CONFERENCE ON DEFENCE TECHNOLOGY - JAPAN (ACDT), 2017, : 140 - 145
  • [34] Estimating the Influence of Oyster Reef Chains on Freshwater Detention at the Estuary Scale Using Landsat-8 Imagery
    Alice Alonso
    Natalie G. Nelson
    Simeon Yurek
    David Kaplan
    Maitane Olabarrieta
    Peter Frederick
    Estuaries and Coasts, 2022, 45 : 1 - 16
  • [35] Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data
    Madugundu, Rangaswamy
    Al-Gaadi, Khalid A.
    Tola, ElKamil
    Kayad, Ahmed G.
    Jha, Chandra Sekhar
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2017, 24 (02) : 410 - 420
  • [36] Assessment of Forest Damage in Croatia using Landsat-8 OLI Images
    Milas, Anita Simic
    Rupasinghe, Prabha
    Balenovic, Ivan
    Grosevski, Pece
    SEEFOR-SOUTH-EAST EUROPEAN FORESTRY, 2015, 6 (02): : 159 - 169
  • [37] Monitoring policy-driven crop area adjustments in northeast China using Landsat-8 imagery
    Yang, Lingbo
    Wang, Limin
    Huang, Jingfeng
    Mansaray, Lamin R.
    Mijiti, Ruzemaimaiti
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 82
  • [38] Monitoring deforestation in Jordan using deep semantic segmentation with satellite imagery
    Alzu'bi, Ahmad
    Alsmadi, Lujain
    ECOLOGICAL INFORMATICS, 2022, 70
  • [39] Cloud Detection and Restoration of Landsat-8 using STARFM
    Lee, Mi Hee
    Cheon, Eun Ji
    Eo, Yang Dam
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (05) : 861 - 871
  • [40] Shoreline analysis using Landsat-8 satellite image
    Yadav A.
    Dodamani B.M.
    Dwarakish G.S.
    ISH Journal of Hydraulic Engineering, 2021, 27 (03) : 347 - 355