Using ResWnet for semantic segmentation of active wildfires from Landsat-8 imagery

被引:0
|
作者
Afsar, Rayan [1 ]
Sultana, Aqsa [2 ]
Abouzahra, Shaik N. [2 ]
Aspiras, Theus [2 ]
Asari, Vijayan K. [2 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
[2] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
来源
PATTERN RECOGNITION AND PREDICTION XXXV | 2024年 / 13040卷
关键词
Semantic segmentation; U-Net; ResWnet; deep learning; convolutional neural networks; fire; wildfire detection; Landsat-8; remote sensing; FIRE DETECTION;
D O I
10.1117/12.3016565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wildfires are a key aspect of many ecosystems, but climate change has created conditions more conducive for devastating wildfires. Thus, it is imperative that relevant agencies know where small fires occur expeditiously. Remote sensing is a key tool for active fire detection (AFD), and satellite imagery in particular is useful due to covering wide areas. Semantic segmentation architectures like U-Net have been used for AFD and have proven very effective. In this paper, we apply a unique variant of U-Net called ResWnet towards AFD, using a large global dataset. ResWnet achieved a precision of 95% and an F-Score of 94.2%, which is better than a U-Net trained on the same dataset.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Disaggregation of Landsat-8 Thermal Data Using Guided SWIR Imagery on the Scene of a Wildfire
    Cho, Kangjoon
    Kim, Yonghyun
    Kim, Yongil
    REMOTE SENSING, 2018, 10 (01):
  • [22] Semantic Segmentation for Ships Detection from Satellite Imagery
    Hordiiuk, Dariia
    Oliinyk, Ievgenii
    Hnatushenko, Volodymyr
    Maksymov, Kostiantyn
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 454 - 457
  • [23] Fuel type mapping using object-based image analysis of DMC and Landsat-8 OLI imagery
    Stefanidou, A.
    Dragozi, E.
    Stavrakoudis, D.
    Gitas, I. Z.
    GEOCARTO INTERNATIONAL, 2018, 33 (10) : 1064 - 1083
  • [24] VOLCANOSTRATIGRAPHY INTERPRETATION OF MAMUJU AREA BASED ON LANDSAT-8 IMAGERY ANALYSIS
    Indrastomo, Frederikus Dian
    Sukadana, I. Gde
    Saepuloh, Asep
    Harsolumakso, Agus Handoyo
    Kamajati, Dhatu
    EKSPLORIUM-BULETIN PUSAT TEKNOLOGI BAHAN GALIAN NUKLIR, 2015, 36 (02): : 71 - 88
  • [25] An Extraction Method for Glacial Lakes Based on Landsat-8 Imagery Using an Improved U-Net Network
    He, Yi
    Yao, Sheng
    Yang, Wang
    Yan, Haowen
    Zhang, Lifeng
    Wen, Zhiqing
    Zhang, Yali
    Liu, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6544 - 6558
  • [26] Remote Estimation of Trophic State Index for Inland Waters Using Landsat-8 OLI Imagery
    Hu, Minqi
    Ma, Ronghua
    Cao, Zhigang
    Xiong, Junfeng
    Xue, Kun
    REMOTE SENSING, 2021, 13 (10)
  • [27] Evaluation of effective spectral features for glacial lake mapping by using Landsat-8 OLI imagery
    Zhang, Mei-mei
    Zhao, Hang
    Chen, Fang
    Zeng, Jiang-yuan
    JOURNAL OF MOUNTAIN SCIENCE, 2020, 17 (11) : 2707 - 2723
  • [28] Accuracy assessment of near-shore bathymetry information retrieved from Landsat-8 imagery
    Keivan Kabiri
    Earth Science Informatics, 2017, 10 : 235 - 245
  • [29] Accuracy assessment of near-shore bathymetry information retrieved from Landsat-8 imagery
    Kabiri, Keivan
    EARTH SCIENCE INFORMATICS, 2017, 10 (02) : 235 - 245
  • [30] Flood Disaster Analysis Using Landsat-8 and SPOT-6 Imagery for Determination of Flooded Areas in Sampang, Madura
    Sukojo, B. M.
    Alfiansyah, F.
    5TH GEOINFORMATION SCIENCE SYMPOSIUM 2017 (GSS 2017), 2017, 98