Using ResWnet for semantic segmentation of active wildfires from Landsat-8 imagery

被引:0
|
作者
Afsar, Rayan [1 ]
Sultana, Aqsa [2 ]
Abouzahra, Shaik N. [2 ]
Aspiras, Theus [2 ]
Asari, Vijayan K. [2 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
[2] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
来源
PATTERN RECOGNITION AND PREDICTION XXXV | 2024年 / 13040卷
关键词
Semantic segmentation; U-Net; ResWnet; deep learning; convolutional neural networks; fire; wildfire detection; Landsat-8; remote sensing; FIRE DETECTION;
D O I
10.1117/12.3016565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wildfires are a key aspect of many ecosystems, but climate change has created conditions more conducive for devastating wildfires. Thus, it is imperative that relevant agencies know where small fires occur expeditiously. Remote sensing is a key tool for active fire detection (AFD), and satellite imagery in particular is useful due to covering wide areas. Semantic segmentation architectures like U-Net have been used for AFD and have proven very effective. In this paper, we apply a unique variant of U-Net called ResWnet towards AFD, using a large global dataset. ResWnet achieved a precision of 95% and an F-Score of 94.2%, which is better than a U-Net trained on the same dataset.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] A Comparative Analysis of Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery
    Dapke, Pratibha P.
    Quadri, Syed Ahteshamuddin
    Nagare, Samadhan M.
    Bandal, Sagar B.
    Baheti, Manasi R.
    INTERNATIONAL JOURNAL OF ENGINEERING AND GEOSCIENCES, 2025, 10 (01): : 84 - 92
  • [12] CloudNet: A Deep Learning Approach for Mitigating Occlusions in Landsat-8 Imagery using Data Coalescence
    Khandelwal, Paahuni
    Armstrong, Samuel
    Matin, Abdul
    Pallickara, Shrideep
    Pallickara, Sangmi Lee
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON E-SCIENCE (ESCIENCE 2022), 2022, : 117 - 127
  • [13] Monitoring Plastic-Mulched Farmland Using Landsat-8 OLI Imagery
    Hasituya
    Chen Zhong-xin
    Wu Wen-bin
    Qing Huang
    2015 FOURTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2015,
  • [14] An Enhanced Algorithm for Active Fire Detection in Croplands Using Landsat-8 OLI Data
    Jiang, Yizhu
    Kong, Jinling
    Zhong, Yanling
    Zhang, Qiutong
    Zhang, Jingya
    LAND, 2023, 12 (06)
  • [15] Cloud Segmentation of Remote Sensing Images on Landsat-8 by Deep Learning
    Zeng, Xiaoshuang
    Yang, Jungang
    Deng, Xinpu
    PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON BIG DATA RESEARCH (ICBDR 2018), 2018, : 174 - 177
  • [16] Effects of Training Samples and Classifiers on Classification of Landsat-8 Imagery
    Shang, Ming
    Wang, Shi-Xin
    Zhou, Yi
    Du, Cong
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (09) : 1333 - 1340
  • [17] Near Real-Time Browsable Landsat-8 Imagery
    Liu, Cheng-Chien
    Nakamura, Ryosuke
    Ko, Ming-Hsun
    Matsuo, Tomoya
    Kato, Soushi
    Yin, Hsiao-Yuan
    Huang, Chung-Shiou
    REMOTE SENSING, 2017, 9 (01):
  • [18] COASTLINE ZONE EXTRACTION USING LANDSAT-8 OLI IMAGERY, CASE STUDY: BODRUM PENINSULA, TURKEY
    Colak, T. Isiacik
    Senel, G.
    Goksel, C.
    5TH INTERNATIONAL CONFERENCE ON GEOINFORMATION SCIENCE - GEOADVANCES 2018: ISPRS CONFERENCE ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2018, 42-4 (W12): : 101 - 104
  • [19] Object-based classification approach for greenhouse mapping using Landsat-8 imagery
    Wu Chaofan
    Deng Jinsong
    Wang Ke
    Ma Ligang
    Tahmassebi, Amir Reza Shah
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2016, 9 (01) : 79 - 88
  • [20] Object-based image analysis of suburban landscapes using Landsat-8 imagery
    Shang, Ming
    Wang, Shixin
    Zhou, Yi
    Du, Cong
    Liu, Wenliang
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2019, 12 (06) : 720 - 736