Using ResWnet for semantic segmentation of active wildfires from Landsat-8 imagery

被引:0
|
作者
Afsar, Rayan [1 ]
Sultana, Aqsa [2 ]
Abouzahra, Shaik N. [2 ]
Aspiras, Theus [2 ]
Asari, Vijayan K. [2 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
[2] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
来源
PATTERN RECOGNITION AND PREDICTION XXXV | 2024年 / 13040卷
关键词
Semantic segmentation; U-Net; ResWnet; deep learning; convolutional neural networks; fire; wildfire detection; Landsat-8; remote sensing; FIRE DETECTION;
D O I
10.1117/12.3016565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wildfires are a key aspect of many ecosystems, but climate change has created conditions more conducive for devastating wildfires. Thus, it is imperative that relevant agencies know where small fires occur expeditiously. Remote sensing is a key tool for active fire detection (AFD), and satellite imagery in particular is useful due to covering wide areas. Semantic segmentation architectures like U-Net have been used for AFD and have proven very effective. In this paper, we apply a unique variant of U-Net called ResWnet towards AFD, using a large global dataset. ResWnet achieved a precision of 95% and an F-Score of 94.2%, which is better than a U-Net trained on the same dataset.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery
    Wang, Zewei
    Yang, Pengfei
    Liang, Haotian
    Zheng, Change
    Yin, Jiyan
    Tian, Ye
    Cui, Wenbin
    REMOTE SENSING, 2022, 14 (01)
  • [2] Active Fire Detection from Landsat-8 Imagery Using Deep Multiple Kernel Learning
    Rostami, Amirhossein
    Shah-Hosseini, Reza
    Asgari, Shabnam
    Zarei, Arastou
    Aghdami-Nia, Mohammad
    Homayouni, Saeid
    REMOTE SENSING, 2022, 14 (04)
  • [3] Active Fire Segmentation: A Transfer Learning Study From Landsat-8 to Sentinel-2
    Fusioka, Andre Minoro
    Pereira, Gabriel Henrique de Almeida
    Nassu, Bogdan Tomoyuki
    Minetto, Rodrigo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14093 - 14108
  • [4] Analysis of Coastline Extraction from Landsat-8 OLI Imagery
    Liu, Yaolin
    Wang, Xia
    Ling, Feng
    Xu, Shuna
    Wang, Chengcheng
    WATER, 2017, 9 (11)
  • [5] SEGMENTATION OF LANDSAT-8 IMAGES FOR BURNED AREA DETECTION WITH DEEP LEARNING
    Alkan, D.
    Karasaka, L.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 455 - 461
  • [6] Monitoring Wildfires in the Northeastern Peruvian Amazon Using Landsat-8 and Sentinel-2 Imagery in the GEE Platform
    Barboza Castillo, Elgar
    Turpo Cayo, Efrain Y.
    de Almeida, Claudia Maria
    Salas Lopez, Rolando
    Rojas Briceno, Nilton B.
    Silva Lopez, Jhonsy Omar
    Barrena Gurbillon, Miguel Angel
    Oliva, Manuel
    Espinoza-Villar, Raul
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [7] Enhanced Feature Pyramid Vision Transformer for Semantic Segmentation on Thailand Landsat-8 Corpus
    Intarat, Kritchayan
    Rakwatin, Preesan
    Panboonyuen, Teerapong
    INFORMATION, 2022, 13 (05)
  • [8] Sea-Land Segmentation Using Deep Learning Techniques for Landsat-8 OLI Imagery
    Yang, Ting
    Jiang, Shenlu
    Hong, Zhonghua
    Zhang, Yun
    Han, Yanling
    Zhou, Ruyan
    Wang, Jing
    Yang, Shuhu
    Tong, Xiaohua
    Kuc, Tae-yong
    MARINE GEODESY, 2020, 43 (02) : 105 - 133
  • [9] DAFDM: A Discerning Deep Learning Model for Active Fire Detection Based on Landsat-8 Imagery
    Gao, Xu
    Shi, Wenzhong
    Zhang, Min
    Wang, Lukang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7982 - 8000
  • [10] Wildfire Detection From Multisensor Satellite Imagery Using Deep Semantic Segmentation
    Rashkovetsky, Dmitry
    Mauracher, Florian
    Langer, Martin
    Schmitt, Michael
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 7001 - 7016