Rational combination of Inverted-Pyramid structured Nickel-based Prussian blue with porous 3D carbon as high-performance sodium-ion batteries cathode

被引:1
|
作者
Yuan, Tiefeng [1 ,2 ]
Gao, Xin [2 ]
Kang, Shifei [1 ,3 ]
Cui, Lifeng [2 ]
机构
[1] Univ Shanghai Sci & Technol, Dept Environm Sci & Engn, Shanghai 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, Coll Smart Energy, Shanghai 200240, Peoples R China
[3] Univ Shanghai Sci & Technol, Inst Photochem & Photofunct Mat IPPM, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Prussian blue analogues; Inverted-Pyramid Structure; Porous 3D Carbon; Sodium-ion Batteries Cathode; Na diffusion barrier; STORAGE PERFORMANCE; HIGH-CAPACITY; ANALOGS; LIFE; HEXACYANOFERRATE; NANOPARTICLES; NANOCRYSTALS; FERRICYANIDE; NANOSHEETS; FACILE;
D O I
10.1016/j.ces.2024.120669
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Metal based Prussian blue composite materials with heterogeneous structures possess substantial potential for enhancing both ionic and charge transfer processes, ultimately expediting electrochemical reaction kinetics for various battery devices. However, the limited bonding between carbon materials and Prussian blue analogues (PBAs) and the uncontrolled nucleation rate of metal component resulted in limited specific capacity and cyclic stability. Herein, we introduced a novel approach for the in-situ synthesis of Ni-PBA with an inverted-pyramid structure on a three-dimensional ultra-thin carbon frames (3DUC) substrate via a hydrothermal method. The inverted pyramid structure fits tightly with the 3DUC during nucleation to form a one-piece stable structure. This integration effectively curbs aggregation and hasty nucleation tendencies of NiPBA. Furthermore, the abundant voids and interconnected networks within the 3DUC structure significantly reduce ion diffusion path lengths, thereby lowering the Na diffusion barrier and enhancing the material's capacitance contribution rate. Consequently, this cathode material exhibits commendable initial capacity (125.2 mAh/g at 50 mA g(-1)) and exceptional long-term cycling stability (with a capacity retention of 89.06 % after 900 cycles at 50 mA g(-1)). These findings hold significant promise for advancing the commercial viability of metal-PBA based electrodes by rational heterogeneous structure design.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries
    Yin, Jinwen
    Shen, Yi
    Li, Chang
    Fan, Chenyang
    Sun, Shixiong
    Liu, Yi
    Peng, Jian
    Qing, Li
    Han, Jiantao
    CHEMSUSCHEM, 2019, 12 (21) : 4786 - 4790
  • [32] In Situ Construction of 3D Interconnected FeS@Fe3C@ Graphitic Carbon Networks for High-Performance Sodium-Ion Batteries
    Wang, Qinghong
    Zhang, Wenchao
    Guo, Can
    Liu, Yajie
    Wang, Chao
    Guo, Zaiping
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (41)
  • [33] Sodium Carboxymethylcellulose Derived Oxygen-Rich Porous Carbon Anodes for High-Performance Lithium/Sodium-Ion Batteries
    Zhang, Yongzhi
    Meng, Yan
    Wang, Yujue
    Chen, Li
    Guo, Yong
    Xiao, Dan
    CHEMELECTROCHEM, 2017, 4 (03): : 500 - 507
  • [34] High-Performance Sodium-Ion Batteries Enabled by 3D Nanoflowers Comprised of Ternary Sn-Based Dichalcogenides Embedded in Nitrogen and Sulfur Dual-Doped Carbon
    Zheng, Yayun
    Wei, Shasha
    Shang, Jitao
    Wang, Du
    Lei, Cheng
    Zhao, Yan
    SMALL, 2023, 19 (47)
  • [35] Nitrogen-Doped Hard Carbon on Nickel Foam as Free-Standing Anodes for High-Performance Sodium-Ion Batteries
    Li, Ruizi
    Huang, Jianfeng
    Li, Jiayin
    Cao, Liyun
    Luo, Yijia
    He, Yuanyuan
    Lu, Guoxing
    Yu, Aimin
    Chen, Shaoyi
    CHEMELECTROCHEM, 2020, 7 (03): : 604 - 613
  • [36] FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors
    Hu, Xiang
    Liu, Yangjie
    Chen, Junxiang
    Jia, Jingchun
    Zhan, Hongbing
    Wen, Zhenhai
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (03) : 1138 - 1148
  • [37] Rational Design of 3D Honeycomb-Like SnS2 Quantum Dots/rGO Composites as High-Performance Anode Materials for Lithium/Sodium-Ion Batteries
    Zhang, Yingge
    Guo, Yan
    Wang, Yange
    Peng, Tao
    Lu, Yang
    Luo, Rongjie
    Wang, Yangbo
    Liu, Xianming
    Kim, Jang-Kyo
    Luo, Yongsong
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [38] Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life
    Hou, Hongshuai
    Banks, Craig E.
    Jing, Mingjun
    Zhang, Yan
    Ji, Xiaobo
    ADVANCED MATERIALS, 2015, 27 (47) : 7861 - 7866
  • [39] Preparation high-performance cathode of vacancy-free Prussian blue analogues for sodium ion batteries by directional capture of free Mn-ion
    Lin, Kai
    He, Zuming
    Shen, Long
    Su, Jiangbin
    Huang, Zhengyi
    Xia, Yongmei
    Wang, Yong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 966
  • [40] Bio-inspired 3D porous carbon nanosheets composite materials for high-performance lithium-ion batteries
    Ding, XiangYu
    Cao, Qi
    Zhu, Sheng
    Xu, Qunjie
    Min, Yulin
    JOURNAL OF NANOPARTICLE RESEARCH, 2020, 22 (01)