A multi-strategy improved sparrow search algorithm for mobile robots path planning

被引:1
|
作者
Fan, Jingkun [1 ]
Qu, Liangdong [1 ]
机构
[1] Guangxi Minzu Univ, Sch Artificial Intelligence, Nanning, Peoples R China
关键词
sparrow search algorithm; chaos operator; adaptive parameters; path planning; mobile robots; OPTIMIZATION;
D O I
10.1088/1361-6501/ad56b2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Path planning for mobile robots plays a vital role in task execution, given the constraints imposed by environments and energy resources. It poses a significant challenge for mobile robots, requiring them to find a feasible path between the start point and target point that is obstacle-free and as short as possible. To address the challenge of path planning, a multi-strategy improved sparrow search algorithm with chaos operator (CMISSA) is proposed. Firstly, Tent chaos mapping and reverse learning are introduced into the population initialization of sparrow search algorithm (SSA) to enhance the uniformity and effectiveness of the initial population distribution. Secondly, adaptive parameters are applied in SSA to maintain a balance between exploitation and exploration. Thirdly, to prevent SSA from getting trapped in local optima, the chaos operator is used to perturb the population position. Finally, a novel adaptive boundary control strategy is introduced to handle the location of individuals that have crossed the boundary. In addition, the experimental results on 15 classical benchmark functions show that CMISSA has better optimization performance than other 10 comparison algorithms. Furthermore, in the path planning experimental results, the results of comparing CMISSA with 5 comparison algorithms on 5 different environments reveal CMISSA's average path shortening rates were 34.90%, 20.11%, 29.01%, 51.97%, 37.42%, respectively. It is further demonstrated that CMISSA has superior availability for solving mobile robots path planning.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Improved path planning algorithm for mobile robots
    Sun, Liping
    Duan, Xiaoyu
    Zhang, Kai
    Xu, Pingan
    Zheng, Xiaoyao
    Yu, Qingying
    Luo, Yonglong
    SOFT COMPUTING, 2023, 27 (20) : 15057 - 15073
  • [32] A Wind Farm Power Maximization Method Based on Multi-Strategy Improved Sparrow Search Algorithm
    Bo, Gu
    Man, Dandan
    Meng, Zhong
    Zhang, Hongtao
    Hu, Hao
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (03):
  • [33] Research on improved RRT path planning algorithm based on multi-strategy fusion
    Shangjing Lei
    Tengyan Li
    Xiaochan Gao
    Pengjun Xue
    Guozhu Song
    Scientific Reports, 15 (1)
  • [34] Application of a Multi-Strategy Improved Sparrow Search Algorithm in Bridge Crane PID Control Systems
    Zhang, Youyuan
    Liu, Lisang
    Liang, Jingrun
    Chen, Jionghui
    Ke, Chengyang
    He, Dongwei
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [35] Agricultural Robot Path Planning Using Multi-Strategy Improved ChimpOptimization Algorithm
    Mu Z.
    Zheng W.
    Haimudula A.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (08): : 161 - 171
  • [36] Path Planning of Robot Based on Improved Multi-Strategy Fusion Whale Algorithm
    You, Dazhang
    Kang, Suo
    Yu, Junjie
    Wen, Changjun
    ELECTRONICS, 2024, 13 (17)
  • [37] Mobile Robots Path Planning based on A* Algorithm Improved with Jump Point Search
    Zafar, Muhammad Aaqib
    Zheng, Zhang
    Yu Wenkai
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 536 - 544
  • [38] A Multi-Strategy Crazy Sparrow Search Algorithm for the Global Optimization Problem
    Jiang, Xuewei
    Wang, Wei
    Guo, Yuanyuan
    Liao, Senlin
    ELECTRONICS, 2023, 12 (18)
  • [39] Multi-strategy sparrow search algorithm with non-uniform mutation
    Huang, Zuwei
    Zhu, Dongli
    Liu, Yujia
    Wang, Xiao
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2022, 10 (01) : 936 - 954
  • [40] MSSSA: a multi-strategy enhanced sparrow search algorithm for global optimization
    Meng, Kai
    Chen, Chen
    Xin, Bin
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (12) : 1828 - 1847