On Additive Gaussian Processes for Wind Farm Power Prediction

被引:0
|
作者
Brealy, Simon M. [1 ]
Bull, Lawrence A. [2 ]
Brennan, Daniel S. [1 ]
Beltrando, Pauline [3 ]
Sommer, Anders [3 ]
Dervilis, Nikolaos [1 ]
Worden, Keith [1 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Dynam Res Grp, Mappin St, Sheffield S1 3JD, England
[2] Univ Cambridge, Dept Engn, Computat Stat & Machine Learning Grp, Cambridge CB3 0FA, England
[3] Vattenfall AB, Vattenfall R&D, Alvkarleby, Sweden
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
Additive Gaussian processes; Wind power prediction; Population-based SHM;
D O I
10.1007/978-3-031-61425-5_58
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Population-based Structural Health Monitoring (PBSHM) aims to share information between similar machines or structures. This paper takes a population-level perspective, exploring the use of additive Gaussian processes to reveal variations in turbine-specific and farm-level power models over a collected wind farm dataset. The predictions illustrate patterns in wind farm power generation, which follow intuition and should enable more informed control and decision-making.
引用
收藏
页码:606 / 614
页数:9
相关论文
共 50 条
  • [41] Wind Farm Power Forecasting
    Haouas, Nabiha
    Bertrand, Pierre R.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [42] Wind power forecasting for the Villonaco wind farm
    Maldonado-Correa, Jorge
    Valdiviezo-Condolo, Marcelo
    Vinan-Ludena, Marlon Santiago
    Samaniego-Ojeda, Carlos
    Rojas-Moncayo, Marco
    WIND ENGINEERING, 2021, 45 (05) : 1145 - 1159
  • [43] Gaussian Processes for radiation dose prediction in nuclear power plant reactors
    Balanya, Sergio A.
    Ramos, Daniel
    Ramirez-Hereza, Pablo
    Toledano, Doroteo T.
    Gonzalez-Rodriguez, Joaquin
    Ariza-Velazquez, Alicia
    Vidal Orlovac, Josip
    Doncel Gutierrez, Nuria
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 230
  • [44] Short-Term Prediction of Wind Farm Power: A Data Mining Approach
    Kusiak, Andrew
    Zheng, Haiyang
    Song, Zhe
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009, 24 (01) : 125 - 136
  • [45] Short-term power prediction of a wind farm based on wavelet analysis
    Wang, Li-Jie
    Dong, Lei
    Liao, Xiao-Zhong
    Gao, Yang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2009, 29 (28): : 30 - 33
  • [46] Artificial Neural Networks based wake model for power prediction of wind farm
    Ti, Zilong
    Deng, Xiao Wei
    Zhang, Mingming
    Renewable Energy, 2021, 172 : 618 - 631
  • [47] Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (03) : 602 - 610
  • [48] A momentum-conserving wake superposition method for wind farm power prediction
    Zong, Haohua
    Porte-Agel, Fernando
    JOURNAL OF FLUID MECHANICS, 2020, 889
  • [49] Wind farm power prediction based on wavelet decomposition and chaotic time series
    An, Xueli
    Jiang, Dongxiang
    Liu, Chao
    Zhao, Minghao
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 11280 - 11285
  • [50] Prediction of Wind Farm Power Ramp Rates: A Data-Mining Approach
    Zheng, Haiyang
    Kusiak, Andrew
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (03): : 0310111 - 0310118