On Additive Gaussian Processes for Wind Farm Power Prediction

被引:0
|
作者
Brealy, Simon M. [1 ]
Bull, Lawrence A. [2 ]
Brennan, Daniel S. [1 ]
Beltrando, Pauline [3 ]
Sommer, Anders [3 ]
Dervilis, Nikolaos [1 ]
Worden, Keith [1 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Dynam Res Grp, Mappin St, Sheffield S1 3JD, England
[2] Univ Cambridge, Dept Engn, Computat Stat & Machine Learning Grp, Cambridge CB3 0FA, England
[3] Vattenfall AB, Vattenfall R&D, Alvkarleby, Sweden
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
Additive Gaussian processes; Wind power prediction; Population-based SHM;
D O I
10.1007/978-3-031-61425-5_58
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Population-based Structural Health Monitoring (PBSHM) aims to share information between similar machines or structures. This paper takes a population-level perspective, exploring the use of additive Gaussian processes to reveal variations in turbine-specific and farm-level power models over a collected wind farm dataset. The predictions illustrate patterns in wind farm power generation, which follow intuition and should enable more informed control and decision-making.
引用
收藏
页码:606 / 614
页数:9
相关论文
共 50 条
  • [31] Probability density distribution function of wind power fluctuation of a wind farm group based on the gaussian mixture model
    Cui Y.
    Yang H.
    Li H.
    1600, Power System Technology Press (40): : 1107 - 1112
  • [32] Deep Learning-Based Prediction of Wind Power for Multi-turbines in a Wind Farm
    Chen, Xiaojiao
    Zhang, Xiuqing
    Dong, Mi
    Huang, Liansheng
    Guo, Yan
    He, Shiying
    Frontiers in Energy Research, 2021, 9
  • [33] Method of estimating frequency regulation capacity of wind farm based on wind power probability prediction
    Yang X.
    Liu Y.
    Xing G.
    Zhang Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (07): : 409 - 416
  • [34] Prediction of Wind Power Generation Based on Time Series Wavelet Transform for Large Wind Farm
    Dong, Lei
    Wang, Lijie
    Liao, Xiaozhong
    Gao, Yang
    Li, Yili
    Wang, Zhiwei
    2009 3RD INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS: ELECTRIC VEHICLE AND GREEN ENERGY, 2009, : 64 - 64
  • [35] Deep Learning-Based Prediction of Wind Power for Multi-turbines in a Wind Farm
    Chen, Xiaojiao
    Zhang, Xiuqing
    Dong, Mi
    Huang, Liansheng
    Guo, Yan
    He, Shiying
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [36] A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada
    Bigdeli, Nooshin
    Afshar, Karim
    Gazafroudi, Amin Shokri
    Ramandi, Mostafa Yousefi
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 27 : 20 - 29
  • [37] Dynamic equivalent modeling of wind farm considering the uncertainty of wind power prediction and a case study
    Li, Longyuan
    Teng, Yufei
    Wang, Xiaoru
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (01)
  • [38] Wind Farm Ultra Short Term Power Prediction Considering Attention Mechanism and Historical Data of Wind Farm Internal Units
    Fan, Wei
    Miao, Lu
    An, Yuzheng
    Chen, Deyang
    Zhong, Kanghua
    2024 6TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES 2024, 2024, : 1121 - 1125
  • [39] PREDICTION OF WIND SPEED, POTENTIAL WIND POWER, AND THE ASSOCIATED UNCERTAINTIES FOR OFFSHORE WIND FARM USING DEEP LEARNING
    Choe, Do-Eun
    Talor, Gary
    Kim, Changkyu
    PROCEEDINGS OF THE ASME 2020 POWER CONFERENCE (POWER2020), 2020,
  • [40] Wind farm power fluctuations
    Sorensen, P.
    Mann, J.
    Paulsen, U. S.
    Vesth, A.
    WIND ENERGY, 2007, : 139 - +