On Additive Gaussian Processes for Wind Farm Power Prediction

被引:0
|
作者
Brealy, Simon M. [1 ]
Bull, Lawrence A. [2 ]
Brennan, Daniel S. [1 ]
Beltrando, Pauline [3 ]
Sommer, Anders [3 ]
Dervilis, Nikolaos [1 ]
Worden, Keith [1 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Dynam Res Grp, Mappin St, Sheffield S1 3JD, England
[2] Univ Cambridge, Dept Engn, Computat Stat & Machine Learning Grp, Cambridge CB3 0FA, England
[3] Vattenfall AB, Vattenfall R&D, Alvkarleby, Sweden
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
Additive Gaussian processes; Wind power prediction; Population-based SHM;
D O I
10.1007/978-3-031-61425-5_58
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Population-based Structural Health Monitoring (PBSHM) aims to share information between similar machines or structures. This paper takes a population-level perspective, exploring the use of additive Gaussian processes to reveal variations in turbine-specific and farm-level power models over a collected wind farm dataset. The predictions illustrate patterns in wind farm power generation, which follow intuition and should enable more informed control and decision-making.
引用
收藏
页码:606 / 614
页数:9
相关论文
共 50 条
  • [21] Handling Big Datasets in Gaussian Processes for Statistical Wind Vector Prediction
    Perne, Matija
    Stepancic, Martin
    Grasic, Bostjan
    IFAC PAPERSONLINE, 2019, 52 (11): : 110 - 115
  • [22] Development of Wind Power Prediction Models for Pawan Danavi Wind Farm in Sri Lanka
    Ekanayake, Piyal
    Peiris, Amila T.
    Jayasinghe, J. M. Jeevani W.
    Rathnayake, Upaka
    Mathematical Problems in Engineering, 2021, 2021
  • [23] Ultra-short-term Prediction of Wind Power Considering Wind Farm Status
    Yang M.
    Zhou Y.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (05): : 1259 - 1267
  • [24] Development of Wind Power Prediction Models for Pawan Danavi Wind Farm in Sri Lanka
    Ekanayake, Piyal
    Peiris, Amila T.
    Jayasinghe, J. M. Jeevani W.
    Rathnayake, Upaka
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [25] Wind Power Prediction for Wind Farm Clusters Based on the Multifeature Similarity Matching Method
    Peng, Xiaosheng
    Chen, Yuzhu
    Cheng, Kai
    Wang, Hongyu
    Zhao, Yunzheng
    Wang, Bo
    Che, Jianfeng
    Liu, Chun
    Wen, Jinyu
    Lu, Chen
    Lee, Wei-Jen
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) : 4679 - 4688
  • [26] A novel heuristic method for wind farm power prediction: A case study
    Ghadi, M. Jabbari
    Gilani, S. Hakimi
    Afrakhte, H.
    Baghramian, A.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 63 : 962 - 970
  • [27] A prediction model for wind farm power generation based on fuzzy modeling
    Zhu, Bo
    Chen, Min-you
    Wade, Neal
    Ran, Li
    2011 INTERNATIONAL CONFERENCE OF ENVIRONMENTAL SCIENCE AND ENGINEERING, VOL 12, PT A, 2012, 12 : 122 - 129
  • [28] An Optimal Active Power Control Method of Wind Farm Using Power Prediction Information
    Chen, Ning
    Wang, Qi
    Tang, Yi
    Zhu, Lingzhi
    Wu, Fubao
    Chen, Mei
    Wang, Ningbo
    2012 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2012,
  • [29] Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes
    Pichault, Mathieu
    Vincent, Claire
    Skidmore, Grant
    Monty, Jason
    WIND ENERGY SCIENCE, 2021, 6 (01) : 131 - 147
  • [30] Analysis on battery capacity demand for wind farm smooth control based on wind power prediction
    Pan, Wenxia
    Fu, Zhongxing
    Wang, Pengfei
    He, Haiping
    Pan, W. (pwxhh@yahoo.com.cn), 1600, Science Press (34): : 490 - 495