On Additive Gaussian Processes for Wind Farm Power Prediction

被引:0
|
作者
Brealy, Simon M. [1 ]
Bull, Lawrence A. [2 ]
Brennan, Daniel S. [1 ]
Beltrando, Pauline [3 ]
Sommer, Anders [3 ]
Dervilis, Nikolaos [1 ]
Worden, Keith [1 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Dynam Res Grp, Mappin St, Sheffield S1 3JD, England
[2] Univ Cambridge, Dept Engn, Computat Stat & Machine Learning Grp, Cambridge CB3 0FA, England
[3] Vattenfall AB, Vattenfall R&D, Alvkarleby, Sweden
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
Additive Gaussian processes; Wind power prediction; Population-based SHM;
D O I
10.1007/978-3-031-61425-5_58
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Population-based Structural Health Monitoring (PBSHM) aims to share information between similar machines or structures. This paper takes a population-level perspective, exploring the use of additive Gaussian processes to reveal variations in turbine-specific and farm-level power models over a collected wind farm dataset. The predictions illustrate patterns in wind farm power generation, which follow intuition and should enable more informed control and decision-making.
引用
收藏
页码:606 / 614
页数:9
相关论文
共 50 条
  • [1] Gaussian models for probabilistic and deterministic Wind Power Prediction: Wind farm and regional
    Ahmadpour, Ali
    Farkoush, Saeid Gholami
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (51) : 27779 - 27791
  • [2] Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction
    Chen, Niya
    Qian, Zheng
    Nabney, Ian T.
    Meng, Xiaofeng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (02) : 656 - 665
  • [3] Distributed learning for wind farm optimization with Gaussian processes
    Andersson, Leif Erik
    Bradford, Eric Christopher
    Imsland, Lars
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 4058 - 4064
  • [4] Multiscale prediction of wind speed and output power for the wind farm
    Wang X.
    LI H.
    Wang, X. (Wangzt@lut.cn), 1600, South China University of Technology (10): : 251 - 258
  • [5] Wind Farm Power Prediction Based on Wind Speed and Power Curve Models
    Lydia, M.
    Kumar, S. Suresh
    Selvakumar, A. Immanuel
    Kumar, G. Edwin Prem
    INTELLIGENT AND EFFICIENT ELECTRICAL SYSTEMS, 2018, 446 : 15 - 24
  • [6] Grouped Gaussian processes for solar power prediction
    Dahl, Astrid
    Bonilla, Edwin V.
    MACHINE LEARNING, 2019, 108 (8-9) : 1287 - 1306
  • [7] Grouped Gaussian processes for solar power prediction
    Astrid Dahl
    Edwin V. Bonilla
    Machine Learning, 2019, 108 : 1287 - 1306
  • [8] Short-Term Wind Power Ensemble Prediction Based on Gaussian Processes and Neural Networks
    Lee, Duehee
    Baldick, Ross
    IEEE TRANSACTIONS ON SMART GRID, 2014, 5 (01) : 501 - 510
  • [9] A new analytical model for wind farm power prediction
    Niayifar, Amin
    Porte-Agel, Fernando
    WAKE CONFERENCE 2015, 2015, 625
  • [10] Methodology and Precision Research of Wind Farm Power Prediction
    Deksnys, Rimantas Pranas
    Stankevicius, Aldas
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2017, 23 (01) : 49 - 56