Analysis of harsh braking and harsh acceleration occurrence via explainable imbalanced machine learning using high-resolution smartphone telematics and traffic data

被引:6
作者
Ziakopoulos, Apostolos [1 ]
机构
[1] Engn Natl Tech Univ Athens NTUA, Dept Transportat Planning, 5 Heroon Polytech Str, GR-15773 Athens, Greece
关键词
Road safety; Surrogate safety measures; Real-time data; Smartphone telematics; Harsh braking; Harsh acceleration; TIME CRASH RISK; SURROGATE SAFETY; FREQUENCY; IMPACT; BEHAVIOR; DRIVERS; SMOTE;
D O I
10.1016/j.aap.2024.107743
中图分类号
TB18 [人体工程学];
学科分类号
1201 ;
摘要
Harsh driving events such as harsh brakings (HBs) and harsh accelerations (HAs) are promising Surrogate Safety Measures, already extensively utilised in road safety research. However, their occurrence relative to normal driving conditions has not been the explicit target of research, as they are typically used as inputs for crash prediction. The present study addresses this research gap by investigating factors influencing HB and HA occurrence using real-time naturalistic driving telematics data recorded from smartphones, traffic data and road geometry & network characteristics data. These multisource data were matched in order to capture the specific circumstances under which HBs and HAs occur. The utilized telematics dataset included trips from 314 anonymous drivers in an urban arterial of Athens, Greece. Subsequently, Synthetic Minority Oversampling TEchnique (SMOTE) was applied due to class imbalance and then binary classification was conducted to detect factors leading to HB and HA occurrence. Imbalanced Machine Learning (ML) XGBoost algorithms predicted over 75% of HBs and over 84% of HAs for the test dataset, indicating suitability for real-time monitoring. The algorithms were also augmented with SHapley Additive exPlanation (SHAP) values, aiming to increase outcome explainability. Results reveal strong nonlinear effects on harsh event occurrence, with individual speed and traffic flow parameters showing the highest influence, followed by exposure parameters such as segment length and pass count. Network characteristics such as number of lanes, and speed limit had limited influence on HA and HB occurrence, as did behaviors such as mobile phone engagement and speeding.
引用
收藏
页数:18
相关论文
共 83 条
[1]   Driving speed and the risk of road crashes: A review [J].
Aarts, L ;
van Schagen, I .
ACCIDENT ANALYSIS AND PREVENTION, 2006, 38 (02) :215-224
[2]   A real-time crash prediction fusion framework: An imbalance- aware strategy for collision avoidance systems [J].
Abou Elassad, Zouhair Elamrani ;
Mousannif, Hajar ;
Al Moatassime, Hassan .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 118
[3]  
[Anonymous], 2024, OSeven Telematics
[4]  
[Anonymous], 2024, R: A language and environment for statistical computing
[5]   A systematic mapping review of surrogate safety assessment using traffic conflict techniques [J].
Arun, Ashutosh ;
Haque, Md Mazharul ;
Bhaskar, Ashish ;
Washington, Simon ;
Sayed, Tarek .
ACCIDENT ANALYSIS AND PREVENTION, 2021, 153 (153)
[6]  
Blanco M., 2011, IMPACT DRIVING NONDR
[7]   Real-time crash prediction on expressways using deep generative models [J].
Cai, Qing ;
Abdel-Aty, Mohamed ;
Yuan, Jinghui ;
Lee, Jaeyoung ;
Wu, Yina .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 117
[8]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[9]  
Chen T., 2021, Package xgboost
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794