Prediction of Long-Term Treatment Outcomes for Diabetic Macular Edema Using a Generative Adversarial Network

被引:4
作者
Baek, Jiwon [1 ,2 ,3 ,4 ]
He, Ye [1 ,4 ]
Emamverdi, Mehdi [1 ,4 ]
Mahmoudi, Alireza [1 ,4 ]
Nittala, Muneeswar Gupta [1 ]
Corradetti, Giulia [1 ,4 ]
Ip, Michael [1 ,4 ]
Sadda, SriniVas R. [1 ,4 ]
机构
[1] Doheny Eye Inst, Pasadena, CA USA
[2] Catholic Univ Korea, Bucheon St Marys Hosp, Coll Med, Dept Ophthalmol, Bucheon, Gyeonggi, South Korea
[3] Catholic Univ Korea, Coll Med, Dept Ophthalmol, Seoul, South Korea
[4] UCLA, David Geffen Sch Med, Dept Ophthalmol, Los Angeles, CA USA
关键词
diabetic macular edema (DME); generative adversarial network (GAN); prediction; randomized controlled trial (RCT); anti-vascular endothelial growth factor (VEGF); ANTI-VEGF TREATMENT; RANIBIZUMAB; DME;
D O I
10.1167/tvst.13.7.4
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: The purpose of this study was to analyze optical coherence tomography (OCT) images of generative adversarial networks (GANs) for the prediction of diabetic macular edema after long-term treatment. Methods: Diabetic macular edema (DME) eyes (n = 327) underwent anti-vascular endothelial growth factor (VEGF) treatments every 4 weeks for 52 weeks from a randomized controlled trial (CRTH258B2305, KINGFISHER) were included. OCT B-scan images through the foveal center at weeks 0, 4, 12, and 52, fundus photography, and retinal thickness (RT) maps were collected. GAN models were trained to generate probable OCT images after treatment. Input for each model were comprised of either the baseline B-scan alone or combined with additional OCT, thickness map, or fundus images. Generated OCT B-scan images were compared with real week 52 images. Results: For 30 test images, 28, 29, 15, and 30 gradable OCT images were generated by CycleGAN, UNIT, Pix2PixHD, and RegGAN, respectively. In comparison with the real week 52, these GAN models showed positive predictive value (PPV), sensitivity, specificity, and kappa for residual fluid ranging from 0.500 to 0.889, 0.455 to 1.000, 0.357 to 0.857, and 0.537 to 0.929, respectively. For hard exudate (HE), they were ranging from 0.500 to 1.000, 0.545 to 0.900, 0.600 to 1.000, and 0.642 to 0.894, respectively. Models trained with week 4 and 12 B-scans as additional inputs to the baseline B-scan showed improved performance. Conclusions: GAN models could predict residual fluid and HE after long-term anti-VEGF treatment of DME. Translational Relevance: The implementation of this tool may help identify potential nonresponders after long-term treatment, thereby facilitating management planning for these eyes.
引用
收藏
页数:11
相关论文
共 32 条
[1]   A Quantitative Approach to Predict Differential Effects of Anti-VEGF Treatment on Diffuse and Focal Leakage in Patients with Diabetic Macular Edema: A Pilot Study [J].
Allingham, Michael J. ;
Mukherjee, Dibyendu ;
Lally, Erin B. ;
Rabbani, Hossein ;
Mettu, Priyatham S. ;
Cousins, Scott W. ;
Farsiu, Sina .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2017, 6 (02)
[2]   Effect of Initial Management With Aflibercept vs Laser Photocoagulation vs Observation on Vision Loss Among Patients With Diabetic Macular Edema Involving the Center of the Macula and Good Visual Acuity A Randomized Clinical Trial [J].
Baker, Carl W. ;
Glassman, Adam R. ;
Beaulieu, Wesley T. ;
Antoszyk, Andrew N. ;
Browning, David J. ;
Chalam, Kakarla V. ;
Grover, Sandeep ;
Jampol, Lee M. ;
Jhaveri, Chirag D. ;
Melia, Michele ;
Stockdale, Cynthia R. ;
Martin, Daniel F. ;
Sun, Jennifer K. ;
Allen, John Bradley ;
Punjabi, Omar S. ;
Price, Angela K. ;
Jones, Taylor S. ;
Mahr, Courtney ;
Herby, Jenna T. ;
Murphy, Brittany A. ;
McClain, Ashley A. ;
Fredenberg, Sherry L. ;
Fleming, Christina J. ;
Lester, Gina M. ;
Karow, Angella S. ;
Breglio, Erica ;
Grupp, Autumn C. ;
Ennis, Sarah A. ;
Bratcher, Kayla A. ;
Watson, Lynn ;
Bojaj, Swann J. ;
McClain, Donna ;
Finch, Autumn K. ;
Dunlap, Matt ;
McOwen, Michael D. ;
Stobbe, Shannon ;
Rowland, Beverly O. ;
Jackson, Lisa A. ;
Clark, Loraine M. ;
Balasubramaniam, Uma M. ;
Kimrey, Kathryn ;
Ragin, Teneisha A. ;
Held, Susannah J. ;
Kuopus, Jeff A. ;
Shore, Carol A. ;
Wykoff, Charles C. ;
Kim, Rosa Y. ;
Shah, Ankoor R. ;
Schefler, Amy C. ;
Wong, Tien P. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 321 (19) :1880-1894
[3]   Persistent Macular Thickening Following Intravitreous Aflibercept, Bevacizumab, or Ranibizumab for Central-Involved Diabetic Macular Edema With Vision Impairment A Secondary Analysis of a Randomized Clinical Trial [J].
Bressler, Neil M. ;
Beaulieu, Wesley T. ;
Glassman, Adam R. ;
Blinder, Kevin J. ;
Bressler, Susan B. ;
Jampol, Lee M. ;
Melia, Michele ;
Wells, John A., III .
JAMA OPHTHALMOLOGY, 2018, 136 (03) :257-269
[4]   Intravitreal Aflibercept for Diabetic Macular Edema 100-Week Results From the VISTA and VIVID Studies [J].
Brown, David M. ;
Schmidt-Erfurth, Ursula ;
Do, Diana V. ;
Holz, Frank G. ;
Boyer, David S. ;
Midena, Edoardo ;
Heier, Jeffrey S. ;
Terasaki, Hiroko ;
Kaiser, Peter K. ;
Marcus, Dennis M. ;
Nguyen, Quan D. ;
Jaffe, Glenn J. ;
Slakter, Jason S. ;
Simader, Christian ;
Soo, Yuhwen ;
Schmelter, Thomas ;
Yancopoulos, George D. ;
Stahl, Neil ;
Vitti, Robert ;
Berliner, Alyson J. ;
Zeitz, Oliver ;
Metzig, Carola ;
Korobelnik, Jean-Francois .
OPHTHALMOLOGY, 2015, 122 (10) :2044-2052
[5]   Prediction of response to anti-vascular endothelial growth factor treatment in diabetic macular oedema using an optical coherence tomography-based machine learning method [J].
Cao, Jing ;
You, Kun ;
Jin, Kai ;
Lou, Lixia ;
Wang, Yao ;
Chen, Menglu ;
Pan, Xiangji ;
Shao, Ji ;
Su, Zhaoan ;
Wu, Jian ;
Ye, Juan .
ACTA OPHTHALMOLOGICA, 2021, 99 (01) :E19-E27
[6]   A Novel Machine Learning Algorithm to Automatically Predict Visual Outcomes in Intravitreal Ranibizumab-Treated Patients with Diabetic Macular Edema [J].
Chen, Shao-Chun ;
Chiu, Hung-Wen ;
Chen, Chun-Chen ;
Woung, Lin-Chung ;
Lo, Chung-Ming .
JOURNAL OF CLINICAL MEDICINE, 2018, 7 (12)
[7]   Synthetic OCT-A blood vessel maps using fundus images and generative adversarial networks [J].
Coronado, Ivan ;
Pachade, Samiksha ;
Trucco, Emanuele ;
Abdelkhaleq, Rania ;
Yan, Juntao ;
Salazar-Marioni, Sergio ;
Jagolino-Cole, Amanda ;
Bahrainian, Mozhdeh ;
Channa, Roomasa ;
Sheth, Sunil A. ;
Giancardo, Luca .
SCIENTIFIC REPORTS, 2023, 13 (01)
[8]   Classification of Regions of Nonperfusion on Ultra-widefield Fluorescein Angiography in Patients with Diabetic Macular Edema [J].
Fang, Mengyuan ;
Fan, Wenying ;
Shi, Yue ;
Ip, Michael S. ;
Wykoff, Charles C. ;
Wang, Kang ;
Falavarjani, Khalil Ghasemi ;
Brown, David M. ;
Van Hemert, Jano ;
Sadda, Srinivas R. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 206 :74-81
[9]   Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema [J].
Gallardo, Mathias ;
Munk, Marion R. ;
Kurmann, Thomas ;
De Zanet, Sandro ;
Mosinska, Agata ;
Karagoz, Isil Kutluturk ;
Zinkernagel, Martin S. ;
Wolf, Sebastian ;
Sznitman, Raphael .
OPHTHALMOLOGY RETINA, 2021, 5 (07) :604-624
[10]   Computational image analysis for prognosis determination in DME [J].
Gerendas, Bianca S. ;
Bogunovic, Hrvoje ;
Sadeghipour, Amir ;
Schlegl, Thomas ;
Langs, Georg ;
Waldstein, Sebastian M. ;
Schmidt-Erfurth, Ursula .
VISION RESEARCH, 2017, 139 :204-210