Strain engineering of Bi2S3 microspheres via organic intercalation enabled high performance sodium storage

被引:17
作者
Xiao, Yuanhua [1 ]
Jiang, Hang [1 ]
Zhang, Kaiyang [1 ]
Kong, Yang [1 ]
Zhang, Shiwei [1 ]
Wang, Haoshuang [1 ]
Yuan, Gaozhan [1 ]
Su, Dangcheng [1 ]
Zhou, Jun [1 ]
Wang, Xuezhao [2 ]
Xin, Ling [3 ]
Wang, Anle [3 ]
Fang, Shaoming [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Mat & Chem Engn, Key Lab Surface & Interface Sci & Technol, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Technol, Coll Chem & Food, Zhengzhou 450044, Peoples R China
[3] Henan Yicheng New Energy Co Ltd, Kaifeng 475000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Sodium ion battery; Sodium-ion capacitors; Interlayer space; Conversion-alloying reaction; ION BATTERIES; LITHIUM; HETEROSTRUCTURE; COMPOSITE; TRANSPORT; SPHERES; LIQUID;
D O I
10.1016/j.cej.2024.152274
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conversion or alloying-type layered metal chalcogenides, which hold great promise as anodes for sodium storage, encounter a significant challenge of volume expansion due to the accumulation of inner strain during the charge-discharge process. This issue leads to severe stress concentration and necessitates urgent attention in terms of dispersing the distribution of inner strain through advanced strain engineering techniques. In this study, we have successfully fabricated Bi2S3-TTAB 2 S 3-TTAB microspheres composed of Bi2S3 2 S 3 nanorods intercalated with tetradecyltrimethylammonium bromide (TTAB). By periodically inserting the soft TTAB into the interlayer of Bi2S3, 2 S 3 , we effectively isolate and confine the Bi2S3 2 S 3 layers while simultaneously expanding the interlamellar spacing. This innovative approach disperses and alleviates the inner strain of Bi2S3 2 S 3 at an atomic level, thereby ensuring electrode stability. As a competitive conversion-alloying-type anode for sodium-ion batteries, the Bi2S3-TTAB 2 S 3-TTAB microspheres demonstrate remarkable performance in terms of high rate capacities and cycle stability (208.4 mAh g- 1 at 15 A g- 1 ; 4910 cycles at 10 A g- 1 with 87.8 % capacity retention). This exceptional Na-ion storage capability enables the utilization of Bi2S3-TTAB 2 S 3-TTAB combined with active carbon as an advanced sodium ion capacitor that demonstrates impressive energy and power densities (144.0 Wh kg- 1 and 5.0 kW kg- 1 ).
引用
收藏
页数:10
相关论文
共 53 条
[21]   Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures [J].
Liu, Xue ;
Zhang, Kai ;
Lei, Kaixiang ;
Li, Fujun ;
Tao, Zhanliang ;
Chen, Jun .
NANO RESEARCH, 2016, 9 (01) :198-206
[22]   Recent progress in the design of metal sulfides as anode materials for sodium ion batteries [J].
Liu, Yanzhen ;
Yang, Chenghao ;
Zhang, Qinyuan ;
Liu, Meilin .
ENERGY STORAGE MATERIALS, 2019, 22 :66-95
[23]   Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium-sulfur batterieS [J].
Long, Bei ;
Qiao, Zhengping ;
Zhang, Jingnan ;
Zhang, Shanqing ;
Balogun, Muhammad-Sadeeq ;
Lu, Jun ;
Song, Shuqin ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) :11370-11378
[24]   Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries [J].
Lu, Chen ;
Li, Zhenzhu ;
Yu, Lianghao ;
Zhang, Li ;
Xia, Zhou ;
Jiang, Tao ;
Yin, Wanjian ;
Dou, Shixue ;
Liu, Zhongfan ;
Sun, Jingyu .
NANO RESEARCH, 2018, 11 (09) :4614-4626
[25]   α-CuV2O6 nanowires:: Hydrothermal synthesis and primary lithium battery application [J].
Ma, Hua ;
Zhang, Shaoyan ;
Ji, Weiqiang ;
Tao, Zhanliang ;
Chen, Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5361-5367
[26]   Nanoionics: ion transport and electrochemical storage in confined systems [J].
Maier, J .
NATURE MATERIALS, 2005, 4 (11) :805-815
[27]   Chemical Preintercalation Synthesis of Versatile Electrode Materials for Electrochemical Energy Storage [J].
Pomerantseva, Ekaterina .
ACCOUNTS OF CHEMICAL RESEARCH, 2023, 56 (01) :13-24
[28]   Production of nanoparticles composed of ionic liquid [C4mpyrr][NTf2] and their chemical identification by diameter analysis and X-ray photoelectron spectroscopy [J].
Shigeyasu, Masaharu ;
Murayama, Haruno ;
Tanaka, Hideki .
CHEMICAL PHYSICS LETTERS, 2008, 463 (4-6) :373-377
[29]   V-O-C Bonding of Heterointerface Boosting Kinetics of Free-Standing Na5V12O32 Cathode for Ultralong Lifespan Sodium-Ion Batteries [J].
Song, Xuexia ;
Li, Xifei ;
Shan, Hui ;
Wang, Jingjing ;
Li, Wenbin ;
Xu, Kaihua ;
Zhang, Kun ;
Sari, Hirbod Maleki Kheimeh ;
Lei, Li ;
Xiao, Wei ;
Qin, Jian ;
Xie, Chong ;
Sun, Xueliang .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
[30]   Manganese-based layered oxides for electrochemical energy storage: a review of degradation mechanisms and engineering strategies at the atomic level [J].
Sun, Shuo ;
Li, Jin ;
Xu, Cuixia ;
Zhai, Teng ;
Xia, Hui .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (37) :19231-19253