A novel multi-label feature selection method based on knowledge consistency-independence index

被引:2
|
作者
Liu, Xiangbin [1 ,2 ]
Zheng, Heming [1 ,2 ]
Chen, Wenxiang [1 ,2 ]
Xia, Liyun [1 ]
Dai, Jianhua [1 ,2 ]
机构
[1] Hunan Normal Univ, Hunan Prov Key Lab Intelligent Comp & Language Inf, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
Rough set; Knowledge granularity; Feature selection; Multi-label; Consistency-independence index; MEMETIC FEATURE-SELECTION; ATTRIBUTE REDUCTION; ALGORITHM; UNCERTAINTY;
D O I
10.1016/j.ins.2024.120870
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-label classification encounters the challenge of dealing with high dimensional data. In response to this challenge, numerous researchers have proposed various multi-label feature selection methods from different perspectives. However, existing methods overlook the consistency and independence of knowledge granules, and thus fail to extract valuable and distinctive information from the knowledge granules that is relevant to the label space. To address this issue, we propose a novel multi-label feature selection method based on the knowledge consistencyindependence index (CIMLFS). Firstly, we introduce the concepts of knowledge consistency granularity and knowledge independence granularity to explore valuable and distinctive information from the knowledge granule families. Secondly, based upon these concepts, we define the consistency coefficient, independence coefficient, and consistency gain for features, ultimately considering the three perspectives to achieve the knowledge consistency-independence index. Furthermore, we present a multi-label feature selection method utilizing the index. Finally, to assess the effectiveness of CIMLFS, we conduct comparative experiments with eight representative multi-label feature selection methods on twelve benchmark multi-label data sets and using four evaluation metrics. The final experimental results indicate that CIMLFS ranks the first on three metrics and the second on one metric.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Label relaxation and shared information for multi-label feature selection
    Fan, Yuling
    Chen, Xu
    Luo, Shimu
    Liu, Peizhong
    Liu, Jinghua
    Chen, Baihua
    Tang, Jianeng
    INFORMATION SCIENCES, 2024, 671
  • [22] Alignment Based Feature Selection for Multi-label Learning
    Chen, Linlin
    Chen, Degang
    NEURAL PROCESSING LETTERS, 2019, 50 (03) : 2323 - 2344
  • [23] Multi-label feature selection based on nonlinear mapping
    Wang, Yan
    Wang, Changzhong
    Deng, Tingquan
    Li, Wenqi
    INFORMATION SCIENCES, 2024, 680
  • [24] Alignment Based Feature Selection for Multi-label Learning
    Linlin Chen
    Degang Chen
    Neural Processing Letters, 2019, 50 : 2323 - 2344
  • [25] A Fast Feature Selection Method Based on Mutual Information in Multi-label Learning
    Sun, Zhenqiang
    Zhang, Jia
    Luo, Zhiming
    Cao, Donglin
    Li, Shaozi
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2018, 2019, 917 : 424 - 437
  • [26] Partial Multi-Label Feature Selection
    Wang, Jing
    Li, Peipei
    Yu, Kui
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [27] Deep label relevance and label ambiguity based multi-label feature selection for text classification
    Verma, Gurudatta
    Sahu, Tirath Prasad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [28] Multi-label feature selection based on manifold regularization and imbalance ratio
    Lu, Haohan
    Chen, Hongmei
    Li, Tianrui
    Chen, Hao
    Luo, Chuan
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11652 - 11671
  • [29] Multi-label Feature Selection Method Based on Multivariate Mutual Information and Particle Swarm Optimization
    Wang, Xidong
    Zhao, Lei
    Xu, Jianhua
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 2018, 11304 : 84 - 95
  • [30] Multi-label feature selection based on rough granular-ball and label distribution
    Qian, Wenbin
    Xu, Fankang
    Qian, Jin
    Shu, Wenhao
    Ding, Weiping
    INFORMATION SCIENCES, 2023, 650