A new Co-based cathode with high performance for intermediate-temperature solid oxide fuel cells

被引:0
|
作者
Zhou, Chaoran [1 ]
Liang, Zhixian [1 ]
Qiu, Hao [1 ]
Jiang, Shanshan [1 ]
Wang, Wei [2 ]
Su, Chao [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212100, Peoples R China
[2] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
cathode; cation doping; intermediate-temperature solid oxide fuel cells; strontium cobalt-based perovskite; PEROVSKITE CATHODE; SR;
D O I
10.1002/apj.3162
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Solid oxide fuel cells (SOFCs) as highly effective energy conversation devices have gained substantial recognition and research interest. The electrochemical properties of the traditional SOFCs are restricted by the sluggish reaction kinetics for the cathode material when lowering the operation temperature to below 600 degrees C. In addition, the stability of the cathode at reduced temperatures is also a big challenge for the widely popularization of SOFC technology. Achieving high activities and stable ORR in the cathode is crucial for the development of SOFCs. The doping active metal method has been demonstrated as an effective approach to optimize the phase structure and improve the ORR activity of the cathode. Herein, we successfully develop an Ir-doped SrCoO3 - delta (SrCo0.98Ir0.02O3-delta, SCI) cathode for SOFCs. SCI exhibits a low area-specific resistance (ASR) of 0.057 Omega cm(2) at 650 degrees C, similar to 44% lower than 0.102 Omega cm(2) of Ir-free SrCoO3-delta. The Ni-Sm0.2Ce0.8O1.90 (SDC) anode-supported fuel cell with SDC electrolyte and SCI cathode obtains an excellent output performance (e.g., 1,128 mW cm(-2) at 650 degrees C). The desired results underscore the feasibility of the Ir-doping strategy as an optimized method for the exploitation of advancing cathode in SOFCs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Tradeoff optimization of electrochemical performance and thermal expansion for Co-based cathode material for intermediate-temperature solid oxide fuel cells
    Park, Seonhye
    Choi, Sihyuk
    Shin, Jeeyoung
    Kim, Guntae
    ELECTROCHIMICA ACTA, 2014, 125 : 683 - 690
  • [2] Bismuth-Based Pervoskite as a High-Performance Cathode for Intermediate-Temperature Solid-Oxide Fuel Cells
    Huang, Shouguo
    Gao, Feng
    Meng, Zheng
    Feng, Shuangjiu
    Sun, Xiaohong
    Li, Yide
    Wang, Chunchang
    CHEMELECTROCHEM, 2014, 1 (03): : 554 - 558
  • [3] A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells
    Gu, Binbin
    Sunarso, Jaka
    Zhang, Yuan
    Song, Yufei
    Yang, Guangming
    Zhou, Wei
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2018, 405 : 124 - 131
  • [4] An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells
    Zhu, Yinlong
    Zhou, Wei
    Chen, Yubo
    Shao, Zongping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (31) : 8988 - 8993
  • [5] LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells
    Zhou, Qingjun
    Wei, W. C. J.
    Guo, Yajie
    Jia, Dan
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 19 : 36 - 38
  • [6] Optimization of composite cathode based on praseodymium cuprate for intermediate-temperature solid oxide fuel cells
    Lyskov, N. V.
    Kolchina, L. M.
    Galin, M. Z.
    Mazo, G. N.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (05) : 450 - 457
  • [7] Improvement of a GDC-based composite cathode for intermediate-temperature solid oxide fuel cells
    Junliang Li
    Jian Shi
    Huaiwen Nie
    Zhongliang Zhan
    Shaorong Wang
    Journal of Electroceramics, 2014, 32 : 339 - 343
  • [8] Optimization of composite cathode based on praseodymium cuprate for intermediate-temperature solid oxide fuel cells
    N. V. Lyskov
    L. M. Kolchina
    M. Z. Galin
    G. N. Mazo
    Russian Journal of Electrochemistry, 2015, 51 : 450 - 457
  • [9] Improvement of a GDC-based composite cathode for intermediate-temperature solid oxide fuel cells
    Li, Junliang
    Shi, Jian
    Nie, Huaiwen
    Zhan, Zhongliang
    Wang, Shaorong
    JOURNAL OF ELECTROCERAMICS, 2014, 32 (04) : 339 - 343
  • [10] Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells
    Hou, Shu-en
    Antonio Alonso, Jose
    Goodenough, John B.
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 280 - 284