Parameter identification of PV solar cells and modules using bio dynamics grasshopper optimization algorithm

被引:5
|
作者
Jabari, Mostafa [1 ]
Rad, Amin [1 ]
Nasab, Morteza Azimi [2 ]
Zand, Mohammad [2 ]
Padmanaban, Sanjeevikumar [2 ]
Muyeen, S. M. [3 ]
Guerrero, Josep M. [4 ,5 ]
机构
[1] Sahand Univ Technol, Fac Elect Engn, Tabriz, Iran
[2] Univ South Eastern Norway, Dept Elect Engn Informat Technol & Cybernet, Porsgrunn, Norway
[3] Qatar Univ, Dept Elect Engn, Doha, Qatar
[4] Aalborg Univ, Ctr Res Microgrids, Aalborg, Denmark
[5] Tech Univ Catalonia, Ctr Res Microgrids CROM, Dept Elect Engn, Barcelona, Spain
关键词
solar cell arrays; solar cells; solar power; ARTIFICIAL BEE COLONY; NEURAL-NETWORK; HYBRID; MODELS; SYSTEM;
D O I
10.1049/gtd2.13279
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The escalating global population and energy demands underscore the critical role of renewable energy sources, particularly solar power, in mitigating environmental degradation caused by traditional fossil fuels. This paper emphasizes the advantages of solar energy, especially photovoltaic (PV) systems, which have become pivotal in hybrid energy systems. However, accurate modelling and identification of PV cell parameters pose challenges, prompting the adoption of meta-heuristic optimization algorithms. This work explores the limitations of existing algorithms and introduces a novel approach, the bio-dynamics grasshopper optimization algorithm (BDGOA). The BDGOA addresses deficiencies in both exploration and exploitation phases, exhibiting exceptional convergence speed and efficiency. The algorithm's simplicity, achieved through the implementation of an elimination phase and controlled search space, enhances its performance without intricate calculations. The study evaluates the BDGOA by applying it to identify unknown parameters of five solar modules. The algorithm's effectiveness is demonstrated through the extraction of parameters for RTC France, PWP201, SM55, KC200GT, and SW255 models, validated against experimental data under diverse conditions. The paper concludes with insights into the impact of radiation and temperature on module parameters. The subsequent sections of the paper delve into the intricacies of the PV cell and module model, articulate the formulation of the proposed algorithm, present simulations, and analyse the obtained results. The BDGOA emerges as a promising solution, overcoming the limitations of existing algorithms and contributing significantly to the advancement of accurate and efficient PV cell parameter identification, thereby propelling progress towards a sustainable energy future. This paper emphasizes the advantages of solar energy, especially photovoltaic systems, which have become pivotal in hybrid energy systems. This work explores the limitations of existing algorithms and introduces a novel approach, the bio-dynamics grasshopper optimization algorithm (BDGOA). The BDGOA addresses deficiencies in both exploration and exploitation phases, exhibiting exceptional convergence speed and efficiency. The algorithm's simplicity, achieved through the implementation of an elimination phase and controlled search space, enhances its performance without intricate calculations. image
引用
收藏
页码:3314 / 3338
页数:25
相关论文
共 50 条
  • [1] Parameter estimation of PV solar cells and modules using Whippy Harris Hawks Optimization Algorithm
    Naeijian, Maryam
    Rahimnejad, Abolfazl
    Ebrahimi, S. Mohammadreza
    Pourmousa, Nafiseh
    Gadsden, S. Andrew
    ENERGY REPORTS, 2021, 7 : 4047 - 4063
  • [2] PV Cells and Modules Parameter Estimation Using Coati Optimization Algorithm
    Elshara, Rafa
    Hancerliogullari, Aybaba
    Rahebi, Javad
    Lopez-Guede, Jose Manuel
    ENERGIES, 2024, 17 (07)
  • [3] Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm
    Ebrahimi, S. Mohammadreza
    Salahshour, Esmaeil
    Malekzadeh, Milad
    Gordillo, Francisco
    ENERGY, 2019, 179 : 358 - 372
  • [4] Parameter identification of solar cells using improved Archimedes Optimization Algorithm
    Krishnan H.
    Islam M.S.
    Ahmad M.A.
    Rashid M.I.M.
    Optik, 2023, 295
  • [5] Modified Whale Optimization Algorithm for Solar Cell and PV Module Parameter Identification
    Ye, Xiaojia
    Liu, Wei
    Li, Hong
    Wang, Mingjing
    Chi, Chen
    Liang, Guoxi
    Chen, Huiling
    Huang, Hailong
    COMPLEXITY, 2021, 2021 (2021)
  • [6] A modified stochastic fractal search algorithm for parameter estimation of solar cells and PV modules
    Xu, Shuhui
    Qiu, Huadong
    ENERGY REPORTS, 2022, 8 : 1853 - 1866
  • [7] Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules
    Diab, Ahmed A. Zaki
    Sultan, Hamdy M.
    Ton Duc Do
    Kamel, Omar Makram
    Mossa, Mahmoud A.
    IEEE ACCESS, 2020, 8 : 111102 - 111140
  • [8] Using a novel optimization algorithm for parameter extraction of photovoltaic cells and modules
    Pourmousa, Nafiseh
    Ebrahimi, S. Mohammadreza
    Malekzadeh, Milad
    Gordillo, Francisco
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04):
  • [9] Using a novel optimization algorithm for parameter extraction of photovoltaic cells and modules
    Nafiseh Pourmousa
    S. Mohammadreza Ebrahimi
    Milad Malekzadeh
    Francisco Gordillo
    The European Physical Journal Plus, 136
  • [10] A comparative study of optimization algorithms for parameter estimation of PV solar cells and modules: Analysis and case studies
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Sharawi, Marwa
    Abdel-Fatah, Laila
    Abouhawwash, Mohamed
    Sallam, Karam
    ENERGY REPORTS, 2022, 8 : 13047 - 13065