Data homogeneity impact in tree species classification based on Sentinel-2 multitemporal data case study in central Sweden

被引:0
|
作者
D'Amico, Giovanni [1 ,2 ]
Nilsson, Mats [3 ]
Axelsson, Arvid [3 ]
Chirici, Gherardo [1 ,4 ]
机构
[1] Univ Florence, Dept Agr Food & Environm & Forestry, Florence, Italy
[2] CREA Res Ctr Forestry & Wood, Arezzo, Italy
[3] Swedish Univ Agr Sci, Dept Forest Resource Management, S-90183 Umea, Sweden
[4] Fdn Futuro Citta, Florence, Italy
关键词
Bayesian inference; tree species; classification; Sentinel-2; NFI; FOREST; SELECTION;
D O I
10.1080/01431161.2024.2371082
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Spatial information on forest composition is invaluable for achieving scientific, ecological, and management objectives and for monitoring multiple changes in forest ecosystems. The increased flow of optical satellite data provides new opportunities to improve tree species mapping. However, the accuracy of such maps is affected by training data, and in particular on the homogeneity of individual classes. Thus, we evaluated the effect of data homogeneity in tree species classification. We performed tree species classification by considering different ways to partition data into tree species classes. The class sets considered were (i) only mixed coniferous and mixed deciduous forest classes, (ii) single-species classes, (iii) single-species, mixed coniferous and mixed deciduous classes, and (iv) single-species, mixed coniferous and mixed deciduous classes and a true mixed class. Using data from the Swedish National Forest Inventory, we varied the threshold that defined dominating species. Tree species were classified for a study area in central Sweden using Sentinel-2 data and two classification approaches: Bayesian inference and random forest (RF). Images were selected by class separability and the most informative images based on variable selection with RF. The most informative images tended to be selected by both methods. However, in forests with tree species of similar spectral behaviour, image selection on the basis of class separability was found to be more reliable. More accurate classification results were achieved as the number of classes decreased and the threshold of plot purity increased. The Bayesian classification approach of only mixed coniferous and mixed deciduous classes gave the highest OA, always greater than 90%. When discriminating between pure plots of Birch (Betula spp.), Spruce (Picea abies), Scots pine (Pinus sylvestris) and Lodgepole pine (Pinus contorta), the best OA values were 84% for Bayesian and 80% for RF. In more complicated scenarios, RF resulted in higher overall accuracies (OA).
引用
收藏
页码:5050 / 5075
页数:26
相关论文
共 50 条
  • [1] Forest Tree Species Classification Based on Sentinel-2 Images and Auxiliary Data
    You, Haotian
    Huang, Yuanwei
    Qin, Zhigang
    Chen, Jianjun
    Liu, Yao
    FORESTS, 2022, 13 (09):
  • [2] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    REMOTE SENSING, 2018, 10 (11)
  • [3] Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve
    Lechner, Michael
    Dostalova, Alena
    Hollaus, Markus
    Atzberger, Clement
    Immitzer, Markus
    REMOTE SENSING, 2022, 14 (11)
  • [4] Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data
    Immitzer, Markus
    Neuwirth, Martin
    Boeck, Sebastian
    Brenner, Harald
    Vuolo, Francesco
    Atzberger, Clement
    REMOTE SENSING, 2019, 11 (22)
  • [5] Multitemporal Sentinel-2 data - remarks and observations
    Kukawska, Ewa
    Lewinski, Stanislaw
    Krupinski, Michal
    Malinowski, Radoslaw
    Nowakowski, Artur
    Rybicki, Marcin
    Kotarba, Andrzej
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [6] Map of forest tree species for Poland based on Sentinel-2 data
    Grabska-Szwagrzyk, Ewa
    Tiede, Dirk
    Sudmanns, Martin
    Kozak, Jacek
    EARTH SYSTEM SCIENCE DATA, 2024, 16 (06) : 2877 - 2891
  • [7] LAND-COVER AND LAND-USE CLASSIFICATION BASED ON MULTITEMPORAL SENTINEL-2 DATA
    Weinmann, Martin
    Weidner, Uwe
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4946 - 4949
  • [8] Tree species classification for clarification of forest inventory data using Sentinel-2 images
    Denisova, Anna Y.
    Kavelenova, Ludmila M.
    Korchikov, Evgeniy S.
    Prokhorova, Nataly V.
    Terentyeva, Daria A.
    Fedoseev, Victor A.
    SEVENTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2019), 2019, 11174
  • [9] First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe
    Immitzer, Markus
    Vuolo, Francesco
    Atzberger, Clement
    REMOTE SENSING, 2016, 8 (03)
  • [10] Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data
    Wessel, Mathias
    Brandmeier, Melanie
    Tiede, Dirk
    REMOTE SENSING, 2018, 10 (09)