External validation of a deep learning model for automatic segmentation of skeletal muscle and adipose tissue on abdominal CT images

被引:0
作者
van Dijk, David P. J. [1 ,2 ,3 ]
Volmer, Leroy F. [4 ,5 ]
Brecheisen, Ralph [1 ,2 ]
Martens, Bibi [5 ,6 ]
Dolan, Ross D. [7 ]
Bryce, Adam S. [8 ,9 ]
Chang, David K. [8 ,9 ]
McMillan, Donald C. [7 ]
Stoot, Jan H. M. B. [3 ]
West, Malcolm A. [10 ]
Rensen, Sander S. [2 ]
Dekker, Andre [4 ,5 ]
Wee, Leonard [4 ,5 ]
Damink, Steven W. M. Olde [1 ,2 ,11 ]
机构
[1] Maastricht Univ, Med Ctr, Dept Surg, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, NUTRIM Sch Nutr & Translat Res Metab, NL-6229 ER Maastricht, Netherlands
[3] Zuyderland Med Ctr, Dept Surg, NL-6162 BG Geleen, Netherlands
[4] Maastricht Univ, Dept Radiotherapy MAASTRO, NL-6229 ET Maastricht, Netherlands
[5] Maastricht Univ, GROW Sch Oncol & Reprod, NL-6229 ER Maastricht, Netherlands
[6] Maastricht Univ, Med Ctr, Dept Radiol, NL-6200 MD Maastricht, Netherlands
[7] Univ Glasgow, Glasgow Royal Infirm, Sch Med, Acad Unit Surg, Glasgow G31 2ER, Scotland
[8] Univ Glasgow, Wolfson Wohl Canc Res Ctr, Sch Canc Sci, Glasgow G61 1BD, Scotland
[9] Glasgow Royal Infirm, West Scotland Pancreat Unit, Glasgow G12 0YN, Scotland
[10] Univ Southampton, Fac Med, Acad Unit Canc Sci, Southampton SO16 6YD, Southampton, England
[11] Univ Hosp Aachen, Dept Gen Visceral & Transplant Surg, D-52074 Aachen, Germany
关键词
body composition; deep learning; convolutional neural networks; image segmentation; CT; BODY-COMPOSITION; EVOLUTION; SURVIVAL; MASS;
D O I
10.1093/bjr/tqae191
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Body composition assessment using CT images at the L3-level is increasingly applied in cancer research and has been shown to be strongly associated with long-term survival. Robust high-throughput automated segmentation is key to assess large patient cohorts and to support implementation of body composition analysis into routine clinical practice. We trained and externally validated a deep learning neural network (DLNN) to automatically segment L3-CT images.Methods Expert-drawn segmentations of visceral and subcutaneous adipose tissue (VAT/SAT) and skeletal muscle (SM) of L3-CT-images of 3187 patients undergoing abdominal surgery were used to train a DLNN. The external validation cohort was comprised of 2535 patients with abdominal cancer. DLNN performance was evaluated with (geometric) dice similarity (DS) and Lin's concordance correlation coefficient.Results There was a strong concordance between automatic and manual segmentations with median DS for SM, VAT, and SAT of 0.97 (IQR: 0.95-0.98), 0.98 (IQR: 0.95-0.98), and 0.95 (IQR: 0.92-0.97), respectively. Concordance correlations were excellent: SM 0.964 (0.959-0.968), VAT 0.998 (0.998-0.998), and SAT 0.992 (0.991-0.993). Bland-Altman metrics indicated only small and clinically insignificant systematic offsets; SM radiodensity: 0.23 Hounsfield units (0.5%), SM: 1.26 cm2.m-2 (2.8%), VAT: -1.02 cm2.m-2 (1.7%), and SAT: 3.24 cm2.m-2 (4.6%).Conclusion A robustly-performing and independently externally validated DLNN for automated body composition analysis was developed.Advances in knowledge This DLNN was successfully trained and externally validated on several large patient cohorts. The trained algorithm could facilitate large-scale population studies and implementation of body composition analysis into clinical practice.
引用
收藏
页码:2015 / 2023
页数:9
相关论文
共 32 条
[1]  
Ackermans L., 2021, SENSORS BASEL SWITZE, V21
[2]   Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients [J].
Ackermans, Leanne L. G. C. ;
Volmer, Leroy ;
Timmermans, Quince M. M. A. ;
Brecheisen, Ralph ;
Damink, Steven M. W. Olde ;
Dekker, Andre ;
Loeffen, Daan ;
Poeze, Martijn ;
Blokhuis, Taco J. ;
Wee, Leonard ;
Ten Bosch, Jan A. .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2022, 53 :S30-S41
[3]   Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches [J].
Bae, Kyongtae T. .
RADIOLOGY, 2010, 256 (01) :32-61
[4]   Artificial intelligence for body composition and sarcopenia evaluation on computed tomography: A systematic review and meta-analysis [J].
Bedrikovetski, Sergei ;
Seow, Warren ;
Kroon, Hidde M. ;
Traeger, Luke ;
Moore, James W. ;
Sammour, Tarik .
EUROPEAN JOURNAL OF RADIOLOGY, 2022, 149
[5]   Body weight and composition endpoints in cancer cachexia clinical trials: Systematic Review 4 of the cachexia endpoints series [J].
Brown, Leo R. ;
Sousa, Mariana S. ;
Yule, Michael S. ;
Baracos, Vickie E. ;
Mcmillan, Donald C. ;
Arends, Jann ;
Balstad, Trude R. ;
Bye, Asta ;
Dajani, Olav ;
Dolan, Ross D. ;
Fallon, Marie T. ;
Greil, Christine ;
Hjermstad, Marianne J. ;
Jakobsen, Gunnhild ;
Maddocks, Matthew ;
Mcdonald, James ;
Ottestad, Inger O. ;
Phillips, Iain ;
Sayers, Judith ;
Simpson, Melanie R. ;
Vagnildhaug, Ola M. ;
Solheim, Tora S. ;
Laird, Barry J. A. ;
Skipworth, Richard J. E. .
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2024, 15 (03) :816-852
[6]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1136/bmj.g7594]
[7]  
Dabiri S, 2020, COMPUT MED IMAG GRAP, V85, DOI [10.1016.j.compmedimag.2020.101776, 10.1016/j.compmedimag.2020.101776]
[8]  
Dolan RD., 2020, JCSM RAPID COMMUN, V3, P81, DOI [DOI 10.1002/RCO2.15, 10.1002/rco2.15]
[9]   Longitudinal Changes in CT Body Composition in Patients Undergoing Surgery for Colorectal Cancer and Associations With Peri-Operative Clinicopathological Characteristics [J].
Dolan, Ross D. ;
Abbass, Tanvir ;
Sim, Wei M. J. ;
Almasaudi, Arwa S. ;
Dieu, Ly B. ;
Horgan, Paul G. ;
McSorley, Stephen T. ;
McMillan, Donald C. .
FRONTIERS IN NUTRITION, 2021, 8
[10]   The relationship between computed tomography-derived body composition, systemic inflammatory response, and survival in patients undergoing surgery for colorectal cancer [J].
Dolan, Ross D. ;
Almasaudi, Arwa S. ;
Dieu, Ly B. ;
Horgan, Paul G. ;
McSorley, Stephen T. ;
McMillan, Donald C. .
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2019, 10 (01) :111-122