Understanding the Effects of Spacecraft Trajectories through Solar Coronal Mass Ejection Flux Ropes Using 3DCOREweb

被引:1
|
作者
Ruedisser, Hannah T. [1 ,2 ]
Weiss, Andreas J. [3 ]
Le Louedec, Justin [1 ]
Amerstorfer, Ute V. [1 ]
Moestl, Christian [1 ]
Davies, Emma E. [1 ]
Lammer, Helmut [4 ]
机构
[1] GeoSphere Austria, Austrian Space Weather Off, Graz, Austria
[2] Karl Franzens Univ Graz, Inst Phys, Graz, Austria
[3] NASA, Goddard Space Flight Ctr, Postdoctoral Program Fellow, Greenbelt, MD USA
[4] Austrian Acad Sci, Space Res Inst, Graz, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
MAGNETIC CLOUDS; EVOLUTION; MODEL; ORBITER; COMPLEXITY; PARAMETERS; SIGNATURES; COHERENCE; ORIGIN; FIELDS;
D O I
10.3847/1538-4357/ad660a
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study investigates the impact of spacecraft positioning and trajectory on in situ signatures of coronal mass ejections (CMEs). Employing the 3DCORE model, a 3D flux rope model that can generate in situ profiles for any given point in space and time, we conduct forward modeling to analyze such signatures for various latitudinal and longitudinal positions, with respect to the flux rope apex, at 0.8 au. Using this approach, we explore the appearance of the resulting in situ profiles for different flux rope types, with different handedness and inclination angles, for both high- and low-twist CMEs. Our findings reveal that CMEs exhibit distinct differences in signatures between apex hits and flank encounters, with the latter displaying elongated profiles with reduced rotation. Notably, constant, nonrotating in situ signatures are only observed for flank encounters of low-twist CMEs, suggesting the existence of untwisted magnetic field lines within CME legs. Additionally, our study confirms the unambiguous appearance of different flux rope types in in situ signatures in all of the cases, barring some indistinguishable cases, contributing to the broader understanding and interpretation of observational data. Given the model assumptions, this may refute trajectory effects as the cause for mismatching flux rope types as identified in solar signatures. While acknowledging limitations inherent in our model, such as the assumption of constant twist and a nondeformable torus-like shape, we still draw relevant conclusions within the context of the global magnetic field structures of CMEs and the potential for distinguishing flux rope types based on in situ observations.
引用
收藏
页数:16
相关论文
共 4 条
  • [1] Multi-point analysis of coronal mass ejection flux ropes using combined data from Solar Orbiter, BepiColombo, and Wind
    Weiss, A. J.
    Moestl, C.
    Davies, E. E.
    Amerstorfer, T.
    Bauer, M.
    Hinterreiter, J.
    Reiss, M. A.
    Bailey, R. L.
    Horbury, T. S.
    O'Brien, H.
    Evans, V
    Angelini, V
    Heyner, D.
    Richter, I
    Auster, H-U
    Magnes, W.
    Fischer, D.
    Baumjohann, W.
    ASTRONOMY & ASTROPHYSICS, 2021, 656
  • [2] Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
    Moestl, C.
    Amerstorfer, T.
    Palmerio, E.
    Isavnin, A.
    Farrugia, C. J.
    Lowder, C.
    Winslow, R. M.
    Donnerer, J. M.
    Kilpua, E. K. J.
    Boakes, P. D.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (03): : 216 - 229
  • [3] Analysis of Coronal Mass Ejection Flux Rope Signatures Using 3DCORE and Approximate Bayesian Computation
    Weiss, Andreas J.
    Moestl, Christian
    Amerstorfer, Tanja
    Bailey, Rachel L.
    Reiss, Martin A.
    Hinterreiter, Juergen
    Amerstorfer, Ute A.
    Bauer, Maike
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 252 (01)
  • [4] Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft: The 3 April 2010 event
    Zhou, Yufen
    Feng, Xueshang
    Zhao, Xinhua
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (12) : 9321 - 9333