Advancements in Q-learning meta-heuristic optimization algorithms: A survey

被引:7
作者
Yang, Yang [1 ,2 ]
Gao, Yuchao [1 ,2 ]
Ding, Zhe [3 ]
Wu, Jinran [4 ]
Zhang, Shaotong [5 ]
Han, Feifei [4 ]
Qiu, Xuelan [4 ]
Gao, Shangce [6 ]
Wang, You-Gan [7 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing, Peoples R China
[3] Queensland Univ Technol, Sch Comp Sci, Brisbane, Qld, Australia
[4] Australian Catholic Univ, Fac Educ & Arts, Banyo, Qld, Australia
[5] Ocean Univ China, Coll Marine Geosci, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Key Lab Submarine Geosci & Prospecting Tech,MOE, Qingdao, Peoples R China
[6] Univ Toyama, Fac Engn, Toyama, Japan
[7] Univ Queensland, Sch Math & Phys, St Lucia, Qld, Australia
关键词
meta-heuristic; optimization; Q-learning; reinforcement learning; PARTICLE SWARM OPTIMIZATION; AUTOMATIC-GENERATION CONTROL; DIFFERENTIAL EVOLUTION; REINFORCEMENT; GRASP;
D O I
10.1002/widm.1548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reviews the integration of Q-learning with meta-heuristic algorithms (QLMA) over the last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects of QLMA, including parameter adaptation, operator selection, and balancing global exploration with local exploitation. QLMA has become a leading solution in industries like energy, power systems, and engineering, addressing a range of mathematical challenges. Looking forward, we suggest further exploration of meta-heuristic integration, transfer learning strategies, and techniques to reduce state space. This article is categorized under: Technologies > Computational Intelligence Technologies > Artificial Intelligence
引用
收藏
页数:37
相关论文
共 188 条
[1]   Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm [J].
Abdel-Basset, Mohamed ;
Mohamed, Reda ;
Sallam, Karam M. ;
Chakrabortty, Ripon K. .
MATHEMATICS, 2022, 10 (19)
[2]   Flower pollination algorithm: a comprehensive review [J].
Abdel-Basset, Mohamed ;
Shawky, Laila A. .
ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (04) :2533-2557
[3]   Knowledge Tracing: A Survey [J].
Abdelrahman, Ghodai ;
Wang, Qing ;
Nunes, Bernardo .
ACM COMPUTING SURVEYS, 2023, 55 (11)
[4]   Dwarf Mongoose Optimization Algorithm [J].
Agushaka, Jeffrey O. ;
Ezugwu, Absalom E. ;
Abualigah, Laith .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
[5]   INFO: An efficient optimization algorithm based on weighted mean of vectors [J].
Ahmadianfar, Iman ;
Heidari, Ali Asghar ;
Noshadian, Saeed ;
Chen, Huiling ;
Gandomi, Amir H. .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
[6]   A reinforcement federated learning based strategy for urinary disease dataset processing [J].
Ahmed, Saleem ;
Groenli, Tor-Morten ;
Lakhan, Abdullah ;
Chen, Yi ;
Liang, Guoxi .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
[7]  
Akbari R., 2009, P 2009 IEEE 13 INT M, P1, DOI 10.1109/INMIC.2009.5383155
[8]   Bacteria foraging optimization algorithm based load frequency controller for interconnected power system [J].
Ali, E. S. ;
Abd-Elazim, S. M. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (03) :633-638
[9]  
Ali Meerza SyedIrfan., 2019, IEEE 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), P1, DOI DOI 10.1109/GCAT47503.2019.8978315
[10]   Evolutionary Algorithms [J].
Bartz-Beielstein, Thomas ;
Branke, Juergen ;
Mehnen, Joern ;
Mersmann, Olaf .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2014, 4 (03) :178-195