Subfield codes of CD-codes over F2[x]/⟨x3 - x⟩

被引:0
作者
Bhagat, Anuj Kumar [1 ]
Sarma, Ritumoni [1 ]
Sagar, Vidya [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Linear code; Subfield code; Minimal code; Optimal code; Self-orthogonal code; Simplicial complex; LINEAR CODES; CYCLIC CODES;
D O I
10.1016/j.disc.2024.114223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A non-zero F-linear map from a finite-dimensional commutative F-algebra to the field Fis called an F-valued trace if its kernel does not contain any non-zero ideals. In this article, we utilize an F2-valued trace of the F2-algebra R2:= F2[x]/x3- x to study binary subfield code C(2) Dof CD:={(x center dot d) d.D: x. Rm2} for each defining set Dderived from a certain simplicial complex. For m. Nand X.{1, 2,..., m}, define X:={v. Fm2: Supp(v). X} and D :=(1 + u2) D1+ u2D2+(u + u2)D3, a subset of Rm2, where u = x + x3- x, D1.{L, cL}, D2.{ M, cM} and D3.{N, cN}, for L, M, N.{1, 2,..., m}. The parameters and the Hamming weight distribution of the binary subfield code C(2)Dof CDare determined for each D. These binary subfield codes are minimal under certain mild conditions on the cardinalities of L, Mand N. Moreover, most of these codes are distanceoptimal. Consequently, we obtain a few infinite families of minimal, self-orthogonal and distance-optimal binary linear codes that are either 2-weight or 4-weight. It is worth mentioning that we have obtained several new distance-optimal binary linear codes. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:22
相关论文
共 50 条
[41]   Linear, Cyclic and Constacyclic Codes over S4 = F2 + uF2 + u2F2 + u3F2 [J].
Ozger, Zeynep Odemis ;
Kara, Ummu Umare ;
Yildiz, Bahattin .
FILOMAT, 2014, 28 (05) :897-906
[42]   Constacyclic Codes of Length 2s Over Galois Extension Rings of F2 + uF2 [J].
Dinh, Hai Q. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (04) :1730-1740
[43]   Extending Construction X for Quantum Error-Correcting Codes [J].
Degwekar, Akshay ;
Guenda, Kenza ;
Gulliver, T. Aaron .
CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 :141-152
[44]   F2F2[u2]F2[u3]-additive cyclic codes are asymptotically good [J].
Dinh, Hai Q. ;
Yadav, Bhanu Pratap ;
Nguyen, Bac T. ;
Upadhyay, Ashish Kumar .
DISCRETE MATHEMATICS, 2025, 348 (07)
[45]   (1 + uv)-cyclic codes over F2 + uF2 + vF2 + uvF2 [J].
Yu, Hai-Feng ;
Zhu, Shi-Xin ;
Zhang, Xia .
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2014, 36 (06) :1419-1422
[46]   ON THE IDEMPOTENTS OF CYCLIC CODES OVER F2t [J].
Han, Sunghyu .
KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (04) :653-663
[47]   Repeated-root constacyclic codes over F2 + uF2 + vF2 + uvF2 [J].
Wang, Liqi ;
Zhu, Shixin .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (10) :2952-2963
[48]   (1+v)-Constacyclic codes over F2 + uF2 + vF2 + uvF2 [J].
Karadeniz, Suat ;
Yildiz, Bahattin .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09) :2625-2632
[49]   Decoding of cyclic codes over F2+uF2 [J].
Udaya, P ;
Bonnecaze, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :2148-2157
[50]   DNA Codes Over the Ring F4[U]/⟨U3⟩ [J].
Liu, Jie ;
Liu, Hualu .
IEEE ACCESS, 2020, 8 :77528-77534