Na/Co dual-doped olivine LiMn0.6Fe0.4PO4 cathode with superior reaction kinetics for Li-ion batteries

被引:1
|
作者
Wang, Pengxu [1 ]
Zhang, Erdong [2 ]
Fang, Yaoguo [2 ]
Chen, Yihong [2 ]
Yu, Haifeng [1 ]
Zhang, Ya [2 ]
Cheng, Qian [2 ]
Jiang, Hao [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China
[2] Shanghai Xuanyi New Energy Dev Co Ltd, Shanghai 201800, Peoples R China
基金
中国博士后科学基金;
关键词
LiMn0.6Fe0.4PO4; Element doping; Rate performance; Li-ion batteries; LITHIUM; PERFORMANCE; CHALLENGES; LIFEPO4;
D O I
10.1007/s10008-024-06043-w
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Olivine-type lithium manganese iron phosphate (LMFP) has been a promising cathode for Li-ion batteries (LIB) owing to its superior safety performance and low cost, yet the intrinsic low ionic/electronic conductivities result in large electrochemical polarization and inferior rate performance. Herein, we report a LMFP with high-power Li-storage capability through a Na/Co co-doped strategy. The Na+ with a larger ionic radius (1.02 & Aring;) locates at Li-sites, effectively widening the Li+ diffusion channel to improve the Li-ion transfer dynamic. The Co2+ located at transition metal sites (TM-sites) can lower the band gap to improve the electronic conductivity, while it can also alleviate the increase in the b-axis parameter to shorten the Li+ transfer path. Accordingly, the concurrently improved ionic/electronic transfer rate endows the superior rate performance of LMFP, with a high reversible capacity of 113.5 mAh g(-1) at 5 C, much higher than the pristine sample (only 79.5 mAh g(-1)). The modified LMFP also displays excellent cycling stability, maintaining 97.1% of its initial capacity after 1000 cycles at 1 C.
引用
收藏
页码:4303 / 4310
页数:8
相关论文
共 50 条
  • [1] Synthesis and Electrochemical Properties of Molybdenum-Doped LiMn0.6Fe0.4PO4 Cathode Materials
    Wen, Lizhi
    Guan, Zhiwei
    Wang, Lei
    Liu, Xiaoming
    Wen, Guoqiang
    Zhao, Yu
    Pang, Dangfeng
    Dou, Ruzhen
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (23) : 12884 - 12890
  • [2] The prepared and electrochemical property of Mg-doped LiMn0.6Fe0.4PO4/C as cathode materials for lithium-ion batteries
    Zhang, Kaicheng
    Cao, Jingrui
    Tian, Shiyu
    Guo, Hongyuan
    Liu, Ruoxuan
    Ren, Xin
    Wen, Lizhi
    Liang, Guangchuan
    IONICS, 2021, 27 (11) : 4629 - 4637
  • [3] Preparation and Electrochemical Properties of Carbon-Coated LiMn0.6Fe0.4PO4 Cathode Material for Lithium-Ion Batteries
    Xiong, Yonglian
    Wei, Ying
    Rong, Wenyi
    Shang, Jin
    He, Kepiao
    Yi, Ting
    Fan, Yongsheng
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (11)
  • [4] Relaxing the Jahn-Teller distortion of LiMn0.6Fe0.4PO4 cathodes via Mg/Ni dual-doping for high-rate and long-life Li-ion batteries
    Yu, Haifeng
    Zhang, Erdong
    Yu, Jinxun
    Yu, Songmin
    Fang, Yaoguo
    Chen, Ling
    Jiang, Hao
    Li, Chunzhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (38) : 26076 - 26082
  • [5] Enhancing the High-Rate Capability and Cycling Stability of LiMn0.6Fe0.4PO4/C Cathode Materials for Lithium-Ion Batteries by Na+ Doping
    Xu, Jiahao
    Hou, Kangwei
    Li, Xiaolin
    Bian, Yuhan
    Wang, Yaping
    Wang, Li
    Liang, Guangchuan
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (19): : 8694 - 8704
  • [6] Microsphere LiMn0.6Fe0.4PO4/C cathode with unique rod-like secondary architecture for high energy lithium ion batteries
    Xie, Liang
    Cui, Jiawu
    Ma, Yongliang
    Hua, Weibo
    Wang, Zhen
    Wu, Hao
    Yang, Taifan
    Tang, Zexun
    Gao, Xiangwen
    Wang, Xiaowei
    Tang, Wei
    Wu, Yuping
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [7] Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack
    Li, Shaoqing
    Meng, Xiaoyi
    Yi, Qiang
    Antonio Alonso, Jose
    Fernandez-Diaz, M. T.
    Sun, Chunwen
    Wang, Zhong Lin
    NANO ENERGY, 2018, 52 : 510 - 516
  • [8] LiNi0.6Co0.4-zTizO2 - New cathode materials for Li-ion batteries
    Baster, Dominika
    Paziak, Piotr
    Ziabka, Magdalena
    Wazny, Gabriela
    Molenda, Janina
    SOLID STATE IONICS, 2018, 320 : 118 - 125
  • [9] Synthesis and Electrochemical Characterization of LiMn0.6Fe0.4PO4/C Cathode Material via a Modified-Solid State Reaction Method
    Kim, Hyun-Ju
    Jin, Bong-Soo
    Bae, Dong-Sik
    Kim, Seong-Bae
    Kim, Hyun-Soo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (05) : 3276 - 3281
  • [10] Electrochemical Properties of Li4Ti5O12 Coated LiMn0.6Fe0.4PO4 Prepared by Rheological Phase Reaction Method
    Gu, Haoyan
    Li, Weida
    Li, Quanchen
    Li, Xinran
    Yang, Hao
    Fu, Quanjun
    Liang, Guangchuan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (04)