Entropy-Driven Self-Assembly of DNA Origami Isomers

被引:0
|
作者
Wu, Hongrui [1 ]
Xu, Xiaojin [2 ]
Wei, Bryan [1 ,2 ]
Lakerveld, Richard [2 ]
机构
[1] Tsinghua Univ, Sch Life Sci, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Clear Water Bay, Hong Kong, Peoples R China
来源
SMALL STRUCTURES | 2024年 / 5卷 / 12期
基金
国家重点研发计划;
关键词
DNA nanostructures; DNA origami; entropy; self-assembly; CONFORMATIONAL ENTROPY; PROTEIN; NANOPARTICLES;
D O I
10.1002/sstr.202400220
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Entropy can be an important factor to direct the self-assembly of biomolecules into specific configurations, which requires repeatable and predictable design principles. Herein, a DNA origami system is presented, which folds into isomers with similar enthalpy but different conformational entropy due to loop formation of the scaffold, which is described quantitatively by an entropy model. It is demonstrated that the equilibrium distribution of a basic system consisting of two isomers can be tuned by changing the length, position, and number of scaffold loops, which is in good agreement with the model predictions. It is also shown that the folding pathway can be controlled kinetically through simple changes in the assembly protocol. Finally, a demonstration is done on how the equilibrium distribution of a more complicated system with six isomers can also be tuned in good agreement with model predictions. Overall, a new system and model for synthesizing nanoscale structures through predictable entropy-driven self-assembly of DNA origami is demonstrated. Given that the model is based on first principles, it is anticipated that the framework can be extended to the self-assembly of other macromolecules such as proteins and RNA. A DNA isomerism system enables predictable entropy-driven self-assembly. Two trapezoids bridged by a scaffold loop self-assemble into isomers with a similar enthalpy but different entropy. Their equilibrium distributions are in good agreement with model predictions. The self-assembly can be finely tuned by the design of the scaffold loops and the design principle is repeatable for synthesis of more complicated structures.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Entropy driven self-assembly of nonamphiphilic colloidal membranes
    Barry, Edward
    Dogic, Zvonimir
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (23) : 10348 - 10353
  • [22] Molecular Behavior of DNA Origami in Higher-Order Self-Assembly
    Li, Zhe
    Liu, Minghui
    Wang, Lei
    Nangreave, Jeanette
    Yan, Hao
    Liu, Yan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (38) : 13545 - 13552
  • [23] Controllable self-assembly of parallel gold nanorod clusters by DNA origami
    Yu, Hang
    Man, Tiantian
    Ji, Wei
    Shi, Leilei
    Wu, Chenwei
    Pei, Hao
    Zhang, Chuan
    CHINESE CHEMICAL LETTERS, 2019, 30 (01) : 175 - 178
  • [24] Entropy in self-assembly
    Francesco Sciortino
    La Rivista del Nuovo Cimento, 2019, 42 : 511 - 548
  • [25] Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami
    Liu, Wenyan
    Li, Ling
    Yang, Shuo
    Gao, Jie
    Wang, Risheng
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (57) : 14177 - 14181
  • [26] Entropy in self-assembly
    Sciortino, Francesco
    RIVISTA DEL NUOVO CIMENTO, 2019, 42 (11): : 511 - 548
  • [27] Controllable self-assembly of parallel gold nanorod clusters by DNA origami
    Hang Yu
    Tiantian Man
    Wei Ji
    Leilei Shi
    Chenwei Wu
    Hao Pei
    Chuan Zhang
    Chinese Chemical Letters, 2019, 30 (01) : 175 - 178
  • [28] Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds
    Chen, Xiaoxing
    Wang, Qian
    Peng, Jin
    Long, Qipeng
    Yu, Hanyang
    Li, Zhe
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (29) : 24344 - 24348
  • [29] Infrared emitting quantum dots: DNA conjugation and DNA origami directed self-assembly
    Samanta, Anirban
    Deng, Zhengtao
    Liu, Yan
    NANOSCALE, 2014, 6 (09) : 4486 - 4490
  • [30] Self-assembly of DNA Origami Using Rolling Circle Amplification Based DNA Nanoribbons
    Liu, Bing
    Ouyang, Xiangyuan
    Chao, Jie
    Liu, Huajie
    Zhao, Yun
    Fan, Chunhai
    CHINESE JOURNAL OF CHEMISTRY, 2014, 32 (02) : 137 - 141