An Improved YOLOv8 Detector for Multi-Scale Target Detection in Remote Sensing Images

被引:0
|
作者
Yue, Min [1 ]
Zhang, Liqiang [1 ]
Zhang, Yujin [2 ]
Zhang, Haifeng [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolutional neural networks; Remote sensing; YOLO; Accuracy; Object detection; Neck; Head; multi-scale target detection; remote sensing image; attention mechanism; GEOSPATIAL OBJECT DETECTION; ACCURATE;
D O I
10.1109/ACCESS.2024.3444606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Target detection via remote sensing is extensively utilized across diverse domains because of its inherent potential value in applications. However, most objects within remote sensing images consist of multi-scale and dense small objects, observed from diverse angles against complex backgrounds, resulting in insufficient detection performance. To enhance the detection accuracy and robustness in detecting multi-scale objects, we present the YOLO-GE algorithm based on you only look once (YOLO). We introduce the ghost convolution hierarchical graph (G-HG) block that combines ghost convolutions and the cross-stage partial (CSP) strategy. This enhancement can efficiently utilize redundant feature maps, broaden the receptive field, and accurately extract multi-scale objects and advanced semantic features in complex backgrounds. By incorporating the G-HG block, we establish the ghost-convolution enhanced hierarchical graph (GE-HGNet) feature extraction backbone, thereby enhancing its ability to capture multi-scale object features and advanced semantic information. Additionally, we develop the E-SimAM attention mechanism using residual techniques to address the low-resolution feature loss limitation, thereby enhancing the precision in identifying low-resolution features against intricate backgrounds. Furthermore, to improve the capability of detecting densely packed small objects, we reconstruct the structure of the neck and add a tiny detection head. This additional tiny detection head is specifically designed to better focus on densely packed small targets, fully leveraging the fine-grained information in shallow feature maps. Extensive experiments conducted on the DIOR, NWPU VHR-10, and VisDrone2019 datasets demonstrate the effectiveness and robustness of our YOLO-GE algorithm. Notably, compared to the state-of-the-art algorithm, our YOLO-GE-n achieves improvements of 20.1% and 22.2% in mAP0.5 and mAP0.5:0.95 respectively on the VisDrone2019 dataset.
引用
收藏
页码:114123 / 114136
页数:14
相关论文
共 50 条
  • [1] An Improved YOLOv8 Network for Multi-Object Detection with Large-Scale Differences in Remote Sensing Images
    Li, Zhaofei
    Zhou, Hao
    Zhang, Yijie
    Tao, Hongjie
    Yu, Hongchun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (14)
  • [2] Aircraft Target Detection in Remote Sensing Images Based on Improved YOLOv5
    Luo, Shun
    Yu, Juan
    Xi, Yunjiang
    Liao, Xiao
    IEEE ACCESS, 2022, 10 : 5184 - 5192
  • [3] A Remote Sensing Image Target Detection Algorithm Based on Improved YOLOv8
    Wang, Haoyu
    Yang, Haitao
    Chen, Hang
    Wang, Jinyu
    Zhou, Xixuan
    Xu, Yifan
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [4] LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection
    Ma, Songzhe
    Lu, Huimin
    Liu, Jie
    Zhu, Yungang
    Sang, Pengcheng
    IEEE ACCESS, 2024, 12 : 29294 - 29307
  • [5] A Fine-Grained Aircraft Target Recognition Algorithm for Remote Sensing Images Based on YOLOV8
    Jiang, Xiao-Nan
    Niu, Xiang-Qian
    Wu, Fan-Lu
    Fu, Yao
    Bao, He
    Fan, Yan-Chao
    Zhang, Yu
    Pei, Jun-Yan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 4060 - 4073
  • [6] A multi-scale target detection method for optical remote sensing images
    Yanqing Feng
    Lunwen Wang
    Mengbo Zhang
    Multimedia Tools and Applications, 2019, 78 : 8751 - 8766
  • [7] A multi-scale target detection method for optical remote sensing images
    Feng, Yanqing
    Wang, Lunwen
    Zhang, Mengbo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (07) : 8751 - 8766
  • [8] Object Detection for Remote Sensing Based on the Enhanced YOLOv8 With WBiFPN
    Shen, Lingyun
    Lang, Baihe
    Song, Zhengxun
    IEEE ACCESS, 2024, 12 : 158239 - 158257
  • [9] Optimized YOLOv8 for multi-scale object detection
    Rasheed, Areeg Fahad
    Zarkoosh, M.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)
  • [10] Target Detection of Remote Sensing Image Based on an Improved YOLOv5
    Han, Hao
    Zhu, Fuzhen
    Zhu, Bing
    Wu, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20