An Efficient NoSQL-Based Storage Schema for Large-Scale Time Series Data

被引:0
作者
Ma, Ruizhe [1 ]
Zhou, Weiwei [2 ]
Ma, Zongmin [2 ]
机构
[1] Univ Massachusetts, Dept Comp Sci, Lowell, MA 01854 USA
[2] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
关键词
HBase; Query; Redis; Storage; Time-Series Data; DATABASES; INTERNET; MODEL;
D O I
10.4018/JDM.339915
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In IoT (internet of things), most data from the connected devices change with time and have sampling intervals, which are called time-series data. It is challenging to design a time series storage model that can write massive time-series data in a short time and can query and analyze the persistent time-series data for a long time. This paper constructs the RHTSDB (Redis-HBase Time Series Database) storage model based on Redis and HBase. RHTSDB uses the memory database Redis (Remote Dictionary Server) to cache massive time-series data, providing efficient data storage and query functions. HBase is used in RHTSDB for long-term storage of time-series data to realize their persistence. The paper designs a cold and hot separation mechanism for time-series data, where the infrequently accessed cold data are stored in HBase, and the frequently accessed and latest data are stored in Redis. Experiments verify that RHTSDB has apparent advantages over Apache IoTDB and HBase in data intake and query efficiency.
引用
收藏
页数:21
相关论文
共 38 条
[1]   ICHC Framework: NoSql Data Model and a Microservices-Based Solution for a Cultural Heritage Platform [J].
Abdelmoumni, Ouadie ;
Chenfour, Noureddine .
INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2022, 10 (01)
[2]   Monarch: Google's Planet-Scale In-Memory Time Series Database [J].
Adams, Colin ;
Alonso, Luis ;
Atkin, Benjamin ;
Banning, John ;
Bhola, Sumeer ;
Buskens, Rick ;
Chen, Ming ;
Chen, Xi ;
Chung, Yoo ;
Jia, Qin ;
Sakharov, Nick ;
Talbot, George ;
Tart, Adam ;
Taylor, Nick .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (12) :3181-3194
[3]   The Rise of NoSQL Systems: Research and Pedagogy [J].
Bajaj, Akhilesh ;
Bick, Wade .
JOURNAL OF DATABASE MANAGEMENT, 2020, 31 (03) :67-82
[4]   Analysing River Systems with Time Series Data Using Path Queries in Graph Databases [J].
Bollen, Erik ;
Hendrix, Rik ;
Kuijpers, Bart ;
Soliani, Valeria ;
Vaisman, Alejandro .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (03)
[5]   Industrial Internet of Things: Persistence for Time Series with NoSQL Databases [J].
Di Martino, Sergio ;
Fiadone, Luca ;
Peron, Adriano ;
Vitale, Vincenzo N. ;
Riccabone, Alberto .
2019 IEEE 28TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2019, :340-345
[6]   Incorporating Spatial Queries into Semantic Sensor Streams on the Internet of Things [J].
Eom, Sungkwang ;
Lee, Kyong-Ho .
JOURNAL OF DATABASE MANAGEMENT, 2017, 28 (04) :24-39
[7]   Designing Graph Databases With GRAPHED [J].
Galva Van Erven, Gustavo Cordeiro ;
Carvalho, Rommel Novaes ;
Cordeiro da Silva, Waldeyr Mendes ;
Lifschitz, Sergio ;
Vera-Olivera, Harley ;
Holanda, Maristela .
JOURNAL OF DATABASE MANAGEMENT, 2019, 30 (01) :41-60
[8]   Scalability Testing Approach for Internet of Things for Manufacturing SQL and NoSQL Database Latency and Throughput [J].
Gamero, David ;
Dugenske, Andrew ;
Saldana, Christopher ;
Kurfess, Thomas ;
Fu, Katherine .
JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2022, 22 (06)
[9]   NagareDB: A Resource-Efficient Document-Oriented Time-Series Database [J].
Garcia Calatrava, Carlos ;
Becerra Fontal, Yolanda ;
Cucchietti, Fernando M. ;
Divi Cuesta, Carla .
DATA, 2021, 6 (08)
[10]   Data management in cloud environments: NoSQL and NewSQL data stores [J].
Grolinger K. ;
Higashino W.A. ;
Tiwari A. ;
Capretz M.A.M. .
Journal of Cloud Computing: Advances, Systems and Applications, 2 (1)