On the Parameterized Complexity of Compact Set Packing

被引:1
作者
Gadekar, Ameet [1 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
基金
欧洲研究理事会;
关键词
Parameterized complexity; Set packing; INDEPENDENT SETS; ALGORITHMS;
D O I
10.1007/s00453-024-01269-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Set Packing problem is, given a collection of sets S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} over a ground set U, to find a maximum collection of sets that are pairwise disjoint. The problem is among the most fundamental NP-hard optimization problems that have been studied extensively in various computational regimes. The focus of this work is on parameterized complexity, Parameterized Set Packing (PSP): Given parameter r is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in {\mathbb N}$$\end{document}, is there a collection S 'subset of S:|S '|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}' \subseteq \mathcal {S}: |\mathcal {S}'| = r$$\end{document} such that the sets in S '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}'$$\end{document} are pairwise disjoint? Unfortunately, the problem is not fixed parameter tractable unless W[1]=FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {W[1]} = \textsf {FPT} $$\end{document}, and, in fact, an "enumerative" running time of |S|Omega(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{\Omega (r)}$$\end{document} is required unless the exponential time hypothesis (ETH) fails. This paper is a quest for tractable instances of Set Packing from parameterized complexity perspectives. We say that the input (U,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({U},\mathcal {S})$$\end{document} is "compact" if |U|=f(r)<middle dot>poly(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot \textsf {poly} ( \log |\mathcal {S}|)$$\end{document}, for some f(r)>= r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(r) \ge r$$\end{document}. In the Compact PSP problem, we are given a compact instance of PSP. In this direction, we present a "dichotomy" result of PSP: When |U|=f(r)<middle dot>o(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot o(\log |\mathcal {S}|)$$\end{document}, PSP is in FPT, while for |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}, the problem is W[1]-hard; moreover, assuming ETH, Compact PSP does not admit |S|o(r/logr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{o(r/\log r)}$$\end{document} time algorithm even when |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}. Although certain results in the literature imply hardness of compact versions of related problems such as Setr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering and Exactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering, these constructions fail to extend to Compact PSP. A novel contribution of our work is the identification and construction of a gadget, which we call Compatible Intersecting Set System pair, that is crucial in obtaining the hardness result for Compact PSP. Finally, our framework can be extended to obtain improved running time lower bounds for Compactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-VectorSum.
引用
收藏
页码:3579 / 3597
页数:19
相关论文
共 25 条
[1]  
[Anonymous], 2006, Parameterized Complexity
[2]   STRUCTURE PRESERVING REDUCTIONS AMONG CONVEX-OPTIMIZATION PROBLEMS [J].
AUSIELLO, G ;
DATRI, A ;
PROTASI, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1980, 21 (01) :136-153
[3]   Inapproximability of Vertex Cover and Independent Set in Bounded Degree Graphs [J].
Austrin, Per ;
Khot, Subhash ;
Safra, Muli .
PROCEEDINGS OF THE 24TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, 2009, :74-+
[4]   ON THE LOVASZ THETA FUNCTION FOR INDEPENDENT SETS IN SPARSE GRAPHS [J].
Bansal, Nikhil ;
Gupta, Anupam ;
Guruganesh, Guru .
SIAM JOURNAL ON COMPUTING, 2018, 47 (03) :1039-1055
[5]  
Bhattacharyya Arnab., 2016, ESA, V11, P1, DOI [10.4230/LIPIcs.ESA.2016.11, DOI 10.4230/LIPICS.ESA.2016.11]
[6]   SET PARTITIONING VIA INCLUSION-EXCLUSION [J].
Bjorklund, Andreas ;
Husfeldt, Thore ;
Koivisto, Mikko .
SIAM JOURNAL ON COMPUTING, 2009, 39 (02) :546-563
[7]  
Cai LM, 2001, LECT NOTES COMPUT SC, V2076, P273
[8]   From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More [J].
Chalermsook, Parinya ;
Cygan, Marek ;
Kortsarz, Guy ;
Laekhanukit, Bundit ;
Manurangsi, Pasin ;
Nanongkai, Danupon ;
Trevisan, Luca .
2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, :743-754
[9]   On linear and semidefinite programming relaxations for hypergraph matching [J].
Chan, Yuk Hei ;
Lau, Lap Chi .
MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) :123-148
[10]   Approximation algorithms and hardness results for the clique packing problem [J].
Chataigner, F. ;
Manic, G. ;
Wakabayashi, Y. ;
Yuster, R. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (07) :1396-1406