TALOS (Total Automation of LabVIEW Operations for Science): A framework for autonomous control systems for complex experiments

被引:1
作者
Volponi, M. [1 ,2 ,3 ]
Zielinski, J. [4 ]
Rauschendorfer, T. [1 ,5 ]
Huck, S. [1 ,6 ]
Caravita, R. [2 ,3 ]
Auzins, M. [1 ,7 ]
Bergmann, B. [8 ]
Burian, P. [8 ]
Brusa, R. S. [2 ,3 ]
Camper, A. [9 ]
Castelli, F. [10 ,11 ]
Cerchiari, G. [12 ,13 ]
Ciurylo, R. [14 ]
Consolati, G. [10 ,15 ]
Doser, M. [1 ]
Eliaszuk, K. [4 ]
Giszczak, A. [4 ]
Gloggler, L. T. [1 ]
Graczykowski, L. [4 ]
Grosbart, M. [1 ]
Guatieri, F. [2 ,3 ]
Gusakova, N. [1 ,16 ]
Gustafsson, F. [1 ]
Haider, S. [1 ]
Janik, M. A. [4 ]
Januszek, T. [4 ]
Kasprowicz, G. [17 ]
Khatri, G. [1 ]
Klosowski, L. [14 ]
Kornakov, G. [4 ]
Krumins, V. [1 ]
Lappo, L. [4 ]
Linek, A. [14 ]
Malamant, J. [1 ,9 ]
Mariazzi, S. [2 ,3 ]
Penasa, L. [2 ,3 ]
Petracek, V. [18 ]
Piwinski, M. [14 ]
Pospisil, S. [8 ]
Povolo, L. [2 ,3 ]
Prelz, F. [10 ]
Rangwala, S. A. [19 ]
Rawat, B. S. [20 ,21 ]
Rienacker, B. [20 ]
Rodin, V. [20 ]
Rohne, O. M. [9 ]
Sandaker, H. [9 ]
Smolyanskiy, P. [8 ]
Sowinski, T. [22 ]
Tefelski, D. [4 ]
机构
[1] CERN, Phys Dept, CH-1211 Geneva 23, Switzerland
[2] INFN Trento, TIFPA, via Sommar 14, I-38123 Trento, Italy
[3] Univ Trento, Dept Phys, via Sommar 14, I-38123 Trento, Italy
[4] Warsaw Univ Technol, Fac Phys, ul Koszykowa 75, PL-00662 Warsaw, Poland
[5] Univ Leipzig, Felix Bloch Inst Solid State Phys, D-04103 Leipzig, Germany
[6] Univ Hamburg, Inst Expt Phys, D-22607 Hamburg, Germany
[7] Univ Latvia, Dept Phys, Raina Blvd 19, LV-1586 Riga, Latvia
[8] Czech Tech Univ, Inst Expt & Appl Phys, Husova 240-5, Prague 1, Czech Republic
[9] Univ Oslo, Dept Phys, Sem Saelandsvei 24, N-0371 Oslo, Norway
[10] INFN Milano, via Celoria 16, I-20133 Milan, Italy
[11] Univ Milan, Dept Phys Aldo Pontremoli, via Celoria 16, I-20133 Milan, Italy
[12] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[13] Univ Siegen, Dept Phys, Walter Flex Str 3, D-57068 Siegen, Germany
[14] Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron & Informat, Grudziadzka 5, PL-87100 Torun, Poland
[15] Politecn Milan, Dept Aerosp Sci & Technol, via La Masa 34, I-20156 Milan, Italy
[16] NTNU Norwegian Univ Sci & Technol, Dept Phys, Trondheim, Norway
[17] Warsaw Univ Technol, Fac Elect & Informat Technol, ul Nowowiejska 15-19, PL-00665 Warsaw, Poland
[18] Czech Tech Univ, Brehova 7, Prague 1, Czech Republic
[19] Raman Res Inst, C V Raman Ave, Bangalore 560080, India
[20] Univ Liverpool, Dept Phys, Liverpool L69 3BX, England
[21] Cockcroft Inst, Daresbury WA4 4AD, England
[22] Polish Acad Sci, Inst Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[23] INFN Pavia, via Bassi 6, I-27100 Pavia, Italy
[24] Univ Brescia, Dept Civil Environm Architectural Engn & Math, via Branze 43, I-25123 Brescia, Italy
关键词
Compendex;
D O I
10.1063/5.0196806
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Modern physics experiments are frequently very complex, relying on multiple simultaneous events to happen in order to obtain the desired result. The experiment control system plays a central role in orchestrating the measurement setup: However, its development is often treated as secondary with respect to the hardware, its importance becoming evident only during the operational phase. Therefore, the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) collaboration has created a framework for easily coding control systems, specifically targeting atomic, quantum, and antimatter experiments. This framework, called Total Automation of LabVIEW Operations for Science (TALOS), unifies all the machines of the experiment in a single entity, thus enabling complex high-level decisions to be taken, and it is constituted by separate modules, called MicroServices, that run concurrently and asynchronously. This enhances the stability and reproducibility of the system while allowing for continuous integration and testing while the control system is running. The system demonstrated high stability and reproducibility, running completely unsupervised during the night and weekends of the data-taking campaigns. The results demonstrate the suitability of TALOS to manage an entire physics experiment in full autonomy: being open-source, experiments other than the AEgIS experiment can benefit from it. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
引用
收藏
页数:21
相关论文
共 24 条
  • [1] LabVIEW-based control software for para-hydrogen induced polarization instrumentation
    Agraz, Jose
    Grunfeld, Alexander
    Li, Debiao
    Cunningham, Karl
    Willey, Cindy
    Pozos, Robert
    Wagner, Shawn
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (04)
  • [2] Pulsed production of antihydrogen
    Amsler, Claude
    Antonello, Massimiliano
    Belov, Alexander
    Bonomi, Germano
    Brusa, Roberto Sennen
    Caccia, Massimo
    Camper, Antoine
    Caravita, Ruggero
    Castelli, Fabrizio
    Cheinet, Patrick
    Comparat, Daniel
    Consolati, Giovanni
    Demetrio, Andrea
    Di Noto, Lea
    Doser, Michael
    Fani, Mattia
    Ferragut, Rafael
    Fesel, Julian
    Gerber, Sebastian
    Giammarchi, Marco
    Gligorova, Angela
    Gloggler, Lisa Theresa
    Guatieri, Francesco
    Haider, Stefan
    Hinterberger, Alexander
    Kellerbauer, Alban
    Khalidova, Olga
    Krasnicky, Daniel
    Lagomarsino, Vittorio
    Malbrunot, Chloe
    Mariazzi, Sebastiano
    Matveev, Viktor
    Muller, Simon
    Nebbia, Giancarlo
    Nedelec, Patrick
    Nowak, Lilian
    Oberthaler, Markus
    Oswald, Emmanuel
    Pagano, Davide
    Penasa, Luca
    Petracek, Vojtech
    Povolo, Luca
    Prelz, Francesco
    Prevedelli, Marco
    Rienacker, Benjamin
    Rohne, Ole
    Rotondi, Alberto
    Sandaker, Heidi
    Santoro, Romualdo
    Testera, Gemma
    [J]. COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [3] Observation of the effect of gravity on the motion of antimatter
    Anderson, E. K.
    Baker, C. J.
    Bertsche, W.
    Bhatt, N. M.
    Bonomi, G.
    Capra, A.
    Carli, I.
    Cesar, C. L.
    Charlton, M.
    Christensen, A.
    Collister, R.
    Mathad, A. Cridland
    Quiceno, D. Duque
    Eriksson, S.
    Evans, A.
    Evetts, N.
    Fabbri, S.
    Fajans, J.
    Ferwerda, A.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Golino, L. M.
    Goncalves, M. B. Gomes
    Grandemange, P.
    Granum, P.
    Hangst, J. S.
    Hayden, M. E.
    Hodgkinson, D.
    Hunter, E. D.
    Isaac, C. A.
    Jimenez, A. J. U.
    Johnson, M. A.
    Jones, J. M.
    Jones, S. A.
    Jonsell, S.
    Khramov, A.
    Madsen, N.
    Martin, L.
    Massacret, N.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Momose, T.
    Mostamand, M.
    Mullan, P. S.
    Nauta, J.
    Olchanski, K.
    Oliveira, A. N.
    Peszka, J.
    [J]. NATURE, 2023, 621 (7980) : 716 - +
  • [4] Bartmann W., 2013, JACoW, P2651
  • [5] Bitter R., 2017, LabVIEW: Advanced Programming Techniques
  • [6] A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio
    Borchert, M. J.
    Devlin, J. A.
    Erlewein, S. R.
    Fleck, M.
    Harrington, J. A.
    Higuchi, T.
    Latacz, B. M.
    Voelksen, F.
    Wursten, E. J.
    Abbass, F.
    Bohman, M. A.
    Mooser, A. H.
    Popper, D.
    Wiesinger, M.
    Will, C.
    Blaum, K.
    Matsuda, Y.
    Ospelkaus, C.
    Quint, W.
    Walz, J.
    Yamazaki, Y.
    Smorra, C.
    Ulmer, S.
    [J]. NATURE, 2022, 601 (7891) : 53 - +
  • [7] Bourdeauducq S., 2016, Artiq 1.0
  • [8] Caravita R., 2023, CERN-SPSC-2024-002
  • [9] SPSC-SR-339
  • [10] PROTOCOL FOR PACKET NETWORK INTERCOMMUNICATION
    CERF, VG
    KAHN, RE
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1974, CO22 (05) : 637 - 648