Magnetic Anisotropy Dominates over Physical and Magnetic Structure in Performance of Magnetic Nanoflowers

被引:2
作者
Borchers, Julie [1 ]
Krycka, Kathryn [1 ]
Bosch-Santos, Brianna [2 ]
Correa, Eduardo de Lima [2 ,3 ]
Sharma, Anirudh [4 ]
Carlton, Hayden [4 ]
Dang, Yanliu [2 ]
Donahue, Michael [5 ]
Gruettner, Cordula [6 ]
Ivkov, Robert [4 ,7 ,8 ,9 ]
Dennis, Cindi L. [2 ]
机构
[1] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[2] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[3] Theiss Res, La Jolla, CA 92037 USA
[4] Johns Hopkins Univ, Sch Med, Dept Radiat Oncol & Mol Radiat Sci, Baltimore, MD 21231 USA
[5] Natl Inst Stand & Technol, Informat Technol Lab, Gaithersburg, MD 20899 USA
[6] Micromod Partikeltechnol GmbH, D-18119 Rostock, Germany
[7] Johns Hopkins Univ, Sch Med, Sydney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21231 USA
[8] Johns Hopkins Univ, Whiting Sch Engn, Dept Mech Engn, Baltimore, MD 21218 USA
[9] Johns Hopkins Univ, Whiting Sch Engn, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
来源
SMALL STRUCTURES | 2025年 / 6卷 / 02期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
magnetic anisotropy; magnetic nanoparticles; nanoflowers; small angle neutron scattering; IRON-OXIDE NANOPARTICLES; CONTRAST AGENTS; HYPERTHERMIA; POLARIZATION; EFFICIENCY; FORMULATION; RADIATION; THERAPY; TUMORS; MODEL;
D O I
10.1002/sstr.202400410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic nanoparticles are indispensable in many biomedical applications, but it remains unclear how the composition and structure will influence the application specific performance. We consider two compositions, ferrite and cobalt ferrite, synthesized under conditions that create aggregated multi-core nanoparticles, called nanoflowers. Each nanoflower has an ionic surfactant or dextran to provide colloid stability in water. The composition, but not the coating, greatly impacts the heating output and the magnetic particle imaging tracer quality (with cobalt ferrite significantly reduced compared to ferrite). The cobalt ferrite nanoflowers have a core/shell structure with a reduced magnetization, which limits the effective magnetic anisotropy of the individual cobalt ferrite nanoflowers as well as the magnetic interactions among the nanoflowers. Both limitations significantly reduce the overall increase in the magnetic anisotropy with increasing magnetic field and consequently the nanoflowers' efficacy for heating and imaging. Despite this, the formation of denser-packed clusters and chains with external magnetic field in the ionic surfactant-cobalt ferrite nanoflowers overcomes some of the shell's detrimental effects, resulting in better heating and imaging properties compared to the dextran-cobalt ferrite. In short, the magnetic anisotropy dominates over physical and magnetic structure in the performance of the studied nanoflowers for heating and imaging applications. Idealized schematics showing example magnetic nanoflower colloidal structures, consistent with the small angle neutron scattering data. The chains increase the overall magnetic anisotropy which controls the MNFs' effectiveness for magnetic particle imaging and magnetic nanofluid hyperthermia. This anisotropy increase can overcome other detrimental effects like shell formation, but, if the increase is too large, may become detrimental.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:23
相关论文
共 50 条
[41]   Materials with perpendicular magnetic anisotropy for magnetic random access memory [J].
Sbiaa, R. ;
Meng, H. ;
Piramanayagam, S. N. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (12) :413-419
[42]   Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires [J].
Sabirianov, R .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (01) :136-139
[43]   Magnetic Anisotropy of Maghemite Nanoparticles Probed by RF Transverse Susceptibility [J].
Figueroa, A. I. ;
Bartolome, J. ;
Garcia, L. M. ;
Bartolome, F. ;
Arauzo, A. ;
Millan, A. ;
Palacio, F. .
20TH INTERNATIONAL CONFERENCE ON MAGNETISM, ICM 2015, 2015, 75 :1050-1057
[44]   Magnetic Barkhausen noise for the study of magnetic anisotropy in stainless steels [J].
Neyra Astudillo, Miriam Rocio ;
Nunez, Nicolas ;
Lopez Pumarega, Maria Isabel ;
Ruzzante, Jose ;
Rodrigues, Linilson Padovese .
MATERIA-RIO DE JANEIRO, 2018, 23 (02)
[45]   Effect of magnetic anisotropy on the mobility of the boundaries in thin magnetic films [J].
V. I. Beresnev ;
B. N. Filippov ;
L. G. Korzunin .
Technical Physics Letters, 1998, 24 :59-60
[46]   Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia [J].
Mamiya, Hiroaki ;
Fukumoto, Hiroya ;
Huaman, Jhon L. Cuya ;
Suzuki, Kazumasa ;
Miyamura, Hiroshi ;
Balachandran, Jeyadevan .
ACS NANO, 2020, 14 (07) :8421-8432
[47]   Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures [J].
成昭华 ;
何为 ;
张向群 ;
孙达力 ;
杜海峰 ;
吴琼 ;
叶军 ;
房亚鹏 ;
刘郝亮 .
Chinese Physics B, 2015, (07) :5-24
[48]   Dependence of the magnetic anisotropy on the ratio of the thicknesses of the magnetic and conductive layers [J].
Jaewon Shin ;
Sung Hoon Kim ;
Shuichiro Hashi ;
Kazushi Ishiyama .
Journal of the Korean Physical Society, 2013, 63 :676-680
[49]   Engineering magnetic anisotropy in two-dimensional magnetic materials [J].
Hu, Jun ;
Wang, Peng ;
Zhao, Jijun ;
Wu, Ruqian .
ADVANCES IN PHYSICS-X, 2018, 3 (01) :443-477
[50]   Dependence of the magnetic anisotropy on the ratio of the thicknesses of the magnetic and conductive layers [J].
Shin, Jaewon ;
Kim, Sung Hoon ;
Hashi, Shuichiro ;
Ishiyama, Kazushi .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 63 (03) :676-680