Magnetic Anisotropy Dominates over Physical and Magnetic Structure in Performance of Magnetic Nanoflowers

被引:2
|
作者
Borchers, Julie [1 ]
Krycka, Kathryn [1 ]
Bosch-Santos, Brianna [2 ]
Correa, Eduardo de Lima [2 ,3 ]
Sharma, Anirudh [4 ]
Carlton, Hayden [4 ]
Dang, Yanliu [2 ]
Donahue, Michael [5 ]
Gruettner, Cordula [6 ]
Ivkov, Robert [4 ,7 ,8 ,9 ]
Dennis, Cindi L. [2 ]
机构
[1] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[2] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[3] Theiss Res, La Jolla, CA 92037 USA
[4] Johns Hopkins Univ, Sch Med, Dept Radiat Oncol & Mol Radiat Sci, Baltimore, MD 21231 USA
[5] Natl Inst Stand & Technol, Informat Technol Lab, Gaithersburg, MD 20899 USA
[6] Micromod Partikeltechnol GmbH, D-18119 Rostock, Germany
[7] Johns Hopkins Univ, Sch Med, Sydney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21231 USA
[8] Johns Hopkins Univ, Whiting Sch Engn, Dept Mech Engn, Baltimore, MD 21218 USA
[9] Johns Hopkins Univ, Whiting Sch Engn, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
来源
SMALL STRUCTURES | 2025年 / 6卷 / 02期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
magnetic anisotropy; magnetic nanoparticles; nanoflowers; small angle neutron scattering; IRON-OXIDE NANOPARTICLES; CONTRAST AGENTS; HYPERTHERMIA; POLARIZATION; EFFICIENCY; FORMULATION; RADIATION; THERAPY; TUMORS; MODEL;
D O I
10.1002/sstr.202400410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic nanoparticles are indispensable in many biomedical applications, but it remains unclear how the composition and structure will influence the application specific performance. We consider two compositions, ferrite and cobalt ferrite, synthesized under conditions that create aggregated multi-core nanoparticles, called nanoflowers. Each nanoflower has an ionic surfactant or dextran to provide colloid stability in water. The composition, but not the coating, greatly impacts the heating output and the magnetic particle imaging tracer quality (with cobalt ferrite significantly reduced compared to ferrite). The cobalt ferrite nanoflowers have a core/shell structure with a reduced magnetization, which limits the effective magnetic anisotropy of the individual cobalt ferrite nanoflowers as well as the magnetic interactions among the nanoflowers. Both limitations significantly reduce the overall increase in the magnetic anisotropy with increasing magnetic field and consequently the nanoflowers' efficacy for heating and imaging. Despite this, the formation of denser-packed clusters and chains with external magnetic field in the ionic surfactant-cobalt ferrite nanoflowers overcomes some of the shell's detrimental effects, resulting in better heating and imaging properties compared to the dextran-cobalt ferrite. In short, the magnetic anisotropy dominates over physical and magnetic structure in the performance of the studied nanoflowers for heating and imaging applications. Idealized schematics showing example magnetic nanoflower colloidal structures, consistent with the small angle neutron scattering data. The chains increase the overall magnetic anisotropy which controls the MNFs' effectiveness for magnetic particle imaging and magnetic nanofluid hyperthermia. This anisotropy increase can overcome other detrimental effects like shell formation, but, if the increase is too large, may become detrimental.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid
    Dennis, C. L.
    Jackson, A. J.
    Borchers, J. A.
    Gruettner, C.
    Ivkov, R.
    NANOTECHNOLOGY, 2018, 29 (21)
  • [2] Efficient Approach to Rank Performance of Magnetic Colloids for Magnetic Particle Imaging and Magnetic Particle Hyperthermia
    Carlton, Hayden
    Salimi, Marzieh
    Arepally, Nageshwar
    Bentolila, Gabriela
    Sharma, Anirudh
    Bibic, Adnan
    Newgren, Matt
    Goodwill, Patrick
    Attaluri, Anilchandra
    Korangath, Preethi
    Bulte, Jeff W. M.
    Ivkov, Robert
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (02)
  • [3] Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy
    Petru, Andreea-Elena
    Iacovita, Cristian
    Fizesan, Ionel
    Dudric, Roxana
    Crestin, Ionut-Valentin
    Lucaciu, Constantin Mihai
    Loghin, Felicia
    Kiss, Bela
    PHARMACEUTICS, 2025, 17 (03)
  • [4] Supraferromagnetic correlations in clusters of magnetic nanoflowers
    Bender, P.
    Honecker, D.
    Fernandez Barquin, L.
    APPLIED PHYSICS LETTERS, 2019, 115 (13)
  • [5] Internal Magnetic Structure of Nanoparticles Dominates Time-Dependent Relaxation Processes in a Magnetic Field
    Dennis, Cindi L.
    Krycka, Kathryn L.
    Borchers, Julie A.
    Desautels, Ryan D.
    van Lierop, Johan
    Huls, Natalie F.
    Jackson, Andrew J.
    Gruettner, Cordula
    Ivkov, Robert
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (27) : 4300 - 4311
  • [6] Structure-Property-Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia
    Bertuit, Enzo
    Benassai, Emilia
    Meriguet, Guillaume
    Greneche, Jean-Marc
    Baptiste, Benoit
    Neveu, Sophie
    Wilhelm, Claire
    Abou-Hassan, Ali
    ACS NANO, 2022, 16 (01) : 271 - 284
  • [7] Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles
    Zhao, Zhiyuan
    Garraud, Nicolas
    Arnold, David P.
    Rinaldi, Carlos
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (02)
  • [8] The evolution of magnetic domain structure with magnetic history in amorphous film with perpendicular anisotropy
    Gao, Jinlong
    Tang, Shaolong
    Li, Yulong
    Xia, Wenbin
    Tang, Tao
    Du, Youwei
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (07)
  • [9] Magnetic Interactions Versus Magnetic Anisotropy in Spinel Ferrite Nanoparticles
    Muscas, Giuseppe
    Cobianchi, Marco
    Lascialfari, Alessandro
    Cannas, Carla
    Musinu, Anna
    Omelyanchik, Alexander
    Rodionova, Valeria
    Fiorani, Dino
    Mameli, Valentina
    Peddis, Davide
    IEEE MAGNETICS LETTERS, 2019, 10
  • [10] Structure-Function Relationship of Iron Oxide Nanoflowers: Optimal Sizes for Magnetic Hyperthermia Depending on Alternating Magnetic Field Conditions
    Bejko, Megi
    Al Yaman, Yasmina
    Keyes, Anthony
    Bagur, Auriane
    Rosa, Patrick
    Gayot, Marion
    Weill, Francois
    Mornet, Stephane
    Sandre, Olivier
    CHEMPHYSCHEM, 2024, 25 (22)