Approximate Controllability for Semilinear Fractional Stochastic Evolution Equations

被引:1
作者
Jiang, Yiming [1 ,2 ]
Ren, Jingchuang [3 ]
Wei, Yawei [1 ,2 ]
Xue, Jie [3 ]
机构
[1] Nankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional stochastic evolution equation; Existence of mild solution; Approximate controllability; Rayleigh-Stokes problem; RAYLEIGH-STOKES PROBLEM; TIME;
D O I
10.1007/s12346-024-01133-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the approximate controllability for a class of semilinear fractional stochastic systems in abstract space with the Riemann-Liouville fractional derivative. The key of the proof is the existence of the mild solution for the proposed problem. These results are based on new properties of the operator obtained by the subordination principle, compact semigroup and Schauder fixed point theorem. Here we obtain the compactness of the solution operator by using Arzel & agrave;-Ascoli theorem. As an application, we establish the approximate controllability of the stochastic Rayleigh-Stokes problem for a generalized second grade fluid.
引用
收藏
页数:22
相关论文
共 30 条
[1]   A Parabolic Problem with a Fractional Time Derivative [J].
Allen, Mark ;
Caffarelli, Luis ;
Vasseur, Alexis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) :603-630
[2]   On concepts of controllability for deterministic and stochastic systems [J].
Bashirov, AE ;
Mahmudov, NI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1808-1821
[3]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[4]   ON INITIAL VALUE AND TERMINAL VALUE PROBLEMS FOR SUBDIFFUSIVE STOCHASTIC RAYLEIGH-STOKES EQUATION [J].
Caraballo, Tomas ;
Tran Bao Ngoc ;
Tran Ngoc Thach ;
Nguyen Huy Tuan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08) :4299-4323
[5]   Lp-estimates for time fractional parabolic equations with coefficients measurable in time [J].
Dong, Hongjie ;
Kim, Doyoon .
ADVANCES IN MATHEMATICS, 2019, 345 :289-345
[6]   The Rayleigh-Stokes problem for heated second grade fluids [J].
Fetecau, C ;
Fetecau, C .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (06) :1011-1015
[7]   Approximate controllability for a class of fractional stochastic wave equations [J].
He, Jia Wei ;
Peng, Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) :1463-1476
[8]   Existence and regularity of solutions for semilinear fractional Rayleigh-Stokes equations [J].
Jiang, Yiming ;
Ren, Jingchuang ;
Wei, Yawei .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03)
[9]   Decay estimates for time-fractional and other non-local in time subdiffusion equations in Rd [J].
Kemppainen, Jukka ;
Siljander, Juhana ;
Vergara, Vicente ;
Zacher, Rico .
MATHEMATISCHE ANNALEN, 2016, 366 (3-4) :941-979
[10]   Hölder continuity of weak solutions to evolution equations with distributed order fractional time derivative [J].
Kubica, Adam ;
Ryszewska, Katarzyna ;
Zacher, Rico .
MATHEMATISCHE ANNALEN, 2024, 390 (02) :2513-2592