Approximate Controllability for Semilinear Fractional Stochastic Evolution Equations
被引:0
|
作者:
Jiang, Yiming
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Jiang, Yiming
[1
,2
]
Ren, Jingchuang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Ren, Jingchuang
[3
]
Wei, Yawei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Wei, Yawei
[1
,2
]
Xue, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Xue, Jie
[3
]
机构:
[1] Nankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Fractional stochastic evolution equation;
Existence of mild solution;
Approximate controllability;
Rayleigh-Stokes problem;
RAYLEIGH-STOKES PROBLEM;
TIME;
D O I:
10.1007/s12346-024-01133-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we show the approximate controllability for a class of semilinear fractional stochastic systems in abstract space with the Riemann-Liouville fractional derivative. The key of the proof is the existence of the mild solution for the proposed problem. These results are based on new properties of the operator obtained by the subordination principle, compact semigroup and Schauder fixed point theorem. Here we obtain the compactness of the solution operator by using Arzel & agrave;-Ascoli theorem. As an application, we establish the approximate controllability of the stochastic Rayleigh-Stokes problem for a generalized second grade fluid.
机构:
Tianshui Normal Univ, Dept Math, Tianshui 741000, Peoples R China
Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R ChinaTianshui Normal Univ, Dept Math, Tianshui 741000, Peoples R China
Ding, Yonghong
Li, Yongxiang
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R ChinaTianshui Normal Univ, Dept Math, Tianshui 741000, Peoples R China
机构:
Univ Petr & Energy Studies, Dept Math, Dehra Dun 248007, Uttar Pradesh, IndiaUniv Petr & Energy Studies, Dept Math, Dehra Dun 248007, Uttar Pradesh, India
Shukla, Anurag
Sukavanam, N.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, IndiaUniv Petr & Energy Studies, Dept Math, Dehra Dun 248007, Uttar Pradesh, India
Sukavanam, N.
Pandey, D. N.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, IndiaUniv Petr & Energy Studies, Dept Math, Dehra Dun 248007, Uttar Pradesh, India
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
Changshu Inst Technol, Dept Math, Suzhou 215500, Jiangsu, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
Fan, Zhenbin
Dong, Qixiang
论文数: 0引用数: 0
h-index: 0
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
Dong, Qixiang
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China