Impact of Magnetic and Flow Fields on Penumbrae and Light Bridges of Three Leading Sunspots in an Active Region

被引:0
作者
Kamlah, R. [1 ,2 ]
Verma, M. [1 ]
Denker, C. [1 ]
Huang, N. [3 ]
Lee, J. [3 ]
Wang, H. [3 ]
机构
[1] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany
[2] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] New Jersey Inst Technol NJIT, Newark, NJ 07102 USA
关键词
Photosphere; Chromosphere; Active regions; Sunspots; Image restoration; Instrumentation and data management; SPECKLE-MASKING; SMALL-SCALE; FINE-STRUCTURE; MOAT FLOW; SOLAR; EVOLUTION; DYNAMICS; FEATURES; RESTORATION; BRIGHTNESS;
D O I
10.1007/s11207-024-02386-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study investigates penumbrae and light bridges based on photospheric and chromospheric flow fields and photospheric magnetic fields in active region NOAA 13096. The improved High-resolution Fast Imager (HiFI+) and the GREGOR Infrared Spectrograph (GRIS) acquired high-resolution imaging and spectropolarimetric data at the 1.5-meter GREGOR solar telescope at the Observatorio del Teide, Iza & ntilde;a, Tenerife, Spain. Background-Subtracted Activity Maps (BaSAMs) have been used to locate areas of enhanced activity, Local Correlation Tracking (LCT) provides horizontal proper motions, and near-infrared full-Stokes polarimetry offers access to magnetic fields and line-of-sight velocities. The results show that the decaying active region is characterized by a triangular region between the three leading, positive-polarity sunspots with unfavorable conditions for penumbra formation. This region has a spongy appearance in narrow-band H alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} images, shows signs of enhanced activity on small spatial scales, is free of divergence centers and exploding granules, lacks well-ordered horizontal flows, has low flow speeds, and is dominated by horizontal magnetic fields. Umbral cores are inactive, but the interface between pores and penumbral filaments often shows enhanced activity. Moat flows and superpenumbrae are almost always observed, when penumbral filaments are present, even in very small penumbral sectors. However, evidence of the moat flow can also be seen around pores, surviving longer than the decaying penumbral filaments. Light bridges have mainly umbral temperatures, reaching quiet-Sun temperatures in some places, show strong intensity variations, and exhibit weak photospheric horizontal flows, while narrow-band H alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} flow maps show substantial inflows.
引用
收藏
页数:27
相关论文
共 102 条
  • [1] G-band spectral synthesis in solar magnetic concentrations
    Almeida, JS
    Ramos, AA
    Trujillo Bueno, J
    Cernicharo, J
    [J]. ASTROPHYSICAL JOURNAL, 2001, 555 (02) : 978 - 989
  • [2] Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope
    Balthasar, H.
    Gomory, P.
    Manrique, S. J. Gonzalez
    Kuckein, C.
    Kavka, J.
    Kucera, A.
    Schwartz, P.
    Vaskova, R.
    Berkefeld, T.
    Collados Vera, M.
    Denker, C.
    Feller, A.
    Hofmann, A.
    Lagg, A.
    Nicklas, H.
    Suarez, D.
    Pastor Yabar, A.
    Rezaei, R.
    Schlichenmaier, R.
    Schmidt, D.
    Schmidt, W.
    Sigwarth, M.
    Sobotka, M.
    Solanki, S. K.
    Soltau, D.
    Staude, J.
    Strassmeier, K. G.
    Volkmer, R.
    von der Luhe, O.
    Waldmann, T.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2016, 337 (10) : 1050 - 1056
  • [3] Constructing computationally tractable models of SiI for the 1082.7 nm transition
    Bard, S.
    Carlsson, M.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 682 (02) : 1376 - 1385
  • [4] Horizontal flows concurrent with an X2.2 flare in the active region NOAA 11158
    Beauregard, L.
    Verma, M.
    Denker, C.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2012, 333 (02) : 125 - 130
  • [5] Beckers J. M., 1968, Sol. Phys, V4, P142
  • [6] What is moss?
    Berger, TE
    De Pontieu, B
    Fletcher, L
    Schrijver, CJ
    Tarbell, TD
    Title, AM
    [J]. SOLAR PHYSICS, 1999, 190 (1-2) : 409 - 418
  • [7] The GREGOR adaptive optics system
    Berkefeld, Th
    Schmidt, D.
    Soltau, D.
    von der Luehe, O.
    Heidecke, F.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2012, 333 (09) : 863 - 871
  • [8] Observations of dark lanes in umbral fine structure from The Hinode solar optical telescope:: Evidence for magnetoconvection
    Bharti, Lokesh
    Joshi, Chandan
    Jaaffrey, S. N. A.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 669 (01) : L57 - L60
  • [9] The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches
    Bobra, M. G.
    Sun, X.
    Hoeksema, J. T.
    Turmon, M.
    Liu, Y.
    Hayashi, K.
    Barnes, G.
    Leka, K. D.
    [J]. SOLAR PHYSICS, 2014, 289 (09) : 3549 - 3578
  • [10] Phase diversity restoration of sunspot images -: II.: Dynamics around a decaying sunspot
    Bonet, JA
    Márquez, I
    Muller, R
    Sobotka, M
    Roudier, T
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 430 (03) : 1089 - 1097