Deep Learning Models to Automate the Scoring of Hand Radiographs for Rheumatoid Arthritis

被引:1
作者
Bold, Zhiyan [1 ]
Coates, Laura C. [2 ]
Papiez, Bartlomiej W. [1 ]
机构
[1] Univ Oxford, Big Data Inst, Nuffield Dept Populat Hlth, Oxford, England
[2] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Oxford, England
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, PT II, MIUA 2024 | 2024年 / 14860卷
基金
英国工程与自然科学研究理事会;
关键词
Rheumatoid Arthritis; Hand X-ray scoring & classification; Deep learning; Transfer learning;
D O I
10.1007/978-3-031-66958-3_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The van der Heijde modification of the Sharp (SvdH) score is a widely used radiographic scoring method to quantify damage in Rheumatoid Arthritis (RA) in clinical trials. However, its complexity with a necessity to score each individual joint, and the expertise required limit its application in clinical practice, especially in disease progression measurement. In this work, we addressed this limitation by developing a bespoke, automated pipeline that is capable of predicting the SvdH score and RA severity from hand radiographs without the need to localise the joints first. Using hand radiographs from RA and suspected RA patients, we first investigated the performance of the state-of-the-art architectures in predicting the total SvdH score for hands and wrists and its corresponding severity class. Secondly, we leveraged publicly available data sets to perform transfer learning with different finetuning schemes and ensemble learning, which resulted in substantial improvement in model performance being on par with an experienced human reader. The best model for RA scoring achieved a Pearson's correlation coefficient (PCC) of 0.925 and root mean squared error (RMSE) of 18.02, while the best model for RA severity classification achieved an accuracy of 0.358 and PCC of 0.859. Our score prediction model attained almost comparable accuracy with experienced radiologists (PCC = 0.97, RMSE = 18.75). Finally, using Grad-CAM, we showed that our models could focus on the anatomical structures in hands and wrists which clinicians deemed as relevant to RA progression in the majority of cases.
引用
收藏
页码:398 / 413
页数:16
相关论文
共 50 条
[31]   Automatic evaluation of atlantoaxial subluxation in rheumatoid arthritis by a deep learning model [J].
Okita, Yasutaka ;
Hirano, Toru ;
Wang, Bowen ;
Nakashima, Yuta ;
Minoda, Saki ;
Nagahara, Hajime ;
Kumanogoh, Atsushi .
ARTHRITIS RESEARCH & THERAPY, 2023, 25 (01)
[32]   Deep Learning in Employee Selection: Evaluation of Algorithms to Automate the Scoring of Open-Ended Assessments [J].
Isaac Thompson ;
Nick Koenig ;
Derek L. Mracek ;
Scott Tonidandel .
Journal of Business and Psychology, 2023, 38 :509-527
[33]   Automatic evaluation of atlantoaxial subluxation in rheumatoid arthritis by a deep learning model [J].
Yasutaka Okita ;
Toru Hirano ;
Bowen Wang ;
Yuta Nakashima ;
Saki Minoda ;
Hajime Nagahara ;
Atsushi Kumanogoh .
Arthritis Research & Therapy, 25
[34]   Vascular calcifications on hand radiographs in rheumatoid arthritis and associations with autoantibodies, cardiovascular risk factors and mortality [J].
Solow, E. Blair ;
Yu, Fang ;
Thiele, Geoffrey M. ;
Sokolove, Jeremy ;
Robinson, William H. ;
Pruhs, Zachary M. ;
Michaud, Kaleb D. ;
Erickson, Alan R. ;
Sayles, Harlan ;
Kerr, Gail S. ;
Gaffo, Angelo L. ;
Caplan, Liron ;
Davis, Lisa A. ;
Cannon, Grant W. ;
Reimold, Andreas M. ;
Baker, Joshua ;
Schwab, Pascale ;
Anderson, Daniel R. ;
Mikuls, Ted R. .
RHEUMATOLOGY, 2015, 54 (09) :1587-1595
[35]   Age Estimation from Left-Hand Radiographs with Deep Learning Methods [J].
Ozdemir, Cuneyt ;
Gedik, Mehmet Ali ;
Kaya, Yilmaz .
TRAITEMENT DU SIGNAL, 2021, 38 (06) :1565-1574
[36]   Skeletal Age Estimation from Hand Radiographs Using Ensemble Deep Learning [J].
Hirasen, Divyan ;
Pillay, Verosha ;
Viriri, Serestina ;
Gwetu, Mandlenkosi .
PATTERN RECOGNITION (MCPR 2021), 2021, 12725 :173-183
[37]   Orientation Regression in Hand Radiographs: A Transfer Learning Approach [J].
Baltruschat, Ivo M. ;
Saalhaeh, Axel ;
Heinrich, Mattias P. ;
Niekisch, Hannes ;
Jockel, Saseha .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[38]   HAND FUNCTION IN RHEUMATOID ARTHRITIS [J].
Magalhaes, Eduardo De Paiva ;
Marinho, Deborah Colchiesqui ;
Bertolo, Manoel Barros ;
de Souza, Jaqueline Cardoso .
JCR-JOURNAL OF CLINICAL RHEUMATOLOGY, 2023, 29 :S78-S79
[39]   Radiographic scoring methods in rheumatoid arthritis and psoriatic arthritis [J].
Fausto Salaffi ;
Marina Carotti ;
Giacomo Beci ;
Marco Di Carlo ;
Andrea Giovagnoni .
La radiologia medica, 2019, 124 :1071-1086
[40]   Radiographic scoring methods in rheumatoid arthritis and psoriatic arthritis [J].
Salaffi, Fausto ;
Carotti, Marina ;
Beci, Giacomo ;
Di Carlo, Marco ;
Giovagnoni, Andrea .
RADIOLOGIA MEDICA, 2019, 124 (11) :1071-1086