Finite groups in which σ-quasinormality is a transitive relation

被引:0
|
作者
Liu, A-Ming [1 ]
Guo, Wenbin [1 ]
Safonov, Vasily G. [2 ,3 ]
Skiba, Alexander N. [4 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R China
[2] Natl Acad Sci Belarus, Inst Math, Minsk 220072, BELARUS
[3] Belarusian State Univ, Dept Mech & Math, Minsk 220030, BELARUS
[4] Francisk Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUS
基金
中国国家自然科学基金;
关键词
Finite group; Modular subgroup; sigma-subnormal subgroup; QUASI-NORMAL SUBGROUPS;
D O I
10.1016/j.jalgebra.2024.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma = { sigma( i) | i is an element of I} be some partition of the set of all primes. A subgroup A of a finite group G is said to be: (i) sigma-subnormal in G if there is a subgroup chain A = A (0) <= A (1) <= center dot center dot center dot <= A (n) = G such that either A( i - 1) (sic) A (i) or A( i) / ( A( i - 1 )) A (i) is a sigma( j)-group, j = j( i), for all i = 1 , ... , n; (ii) modular in G if the following conditions are held: (1) < X, A boolean AND Z) = < X, A >boolean AND Z for all X <= G, Z <= G such that X <= Z, and (2) < A, Y boolean AND Z > = < A, Y >boolean AND Z for all Y <= G, Z <= G such that A <= Z; (iii) sigma-quasinormal in G if A is sigma-subnormal and modular in G. We obtain a description of finite groups in which sigma-quasinormality (respectively, modularity) is a transitive relation. Some known results are extended. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:869 / 887
页数:19
相关论文
共 50 条
  • [31] Periodic linear groups in which permutability is a transitive relation
    Ferrara, Maria
    Trombetti, Marco
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 361 - 383
  • [32] FINITE GROUPS WHICH ARE MINIMAL WITH RESPECT TO S-QUASINORMALITY AND SELF-NORMALITY
    Han, Zhangjia
    Shi, Huaguo
    Zhou, Wei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 2079 - 2087
  • [33] Some characterizations of finite groups in which semipermutability is a transitive relation (vol 22, pg 855, 2010)
    Al-Sharo, Kahled A.
    Beidleman, James C.
    Heineken, Hermann
    Ragland, Matthew F.
    FORUM MATHEMATICUM, 2012, 24 (06) : 1333 - 1334
  • [34] ON GENERALISED FC-GROUPS IN WHICH NORMALITY IS A TRANSITIVE RELATION
    Esteban-Romero, R.
    Vincenzi, G.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 100 (02) : 192 - 198
  • [35] A note on finite groups in which c-permutability is transitive
    Al-Sharo, K. A.
    Suleiman, I. A. I.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (1-2) : 162 - 168
  • [36] Finite groups in which normality, permutability or Sylow permutability is transitive
    Malinowska, Izabela Agata
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 137 - 146
  • [37] A note on finite groups in which c-permutability is transitive
    Khaled A. Al-Sharo
    Ibrahim A. I. Suleiman
    Acta Mathematica Hungarica, 2012, 134 : 162 - 168
  • [38] GROUPS WHOSE FINITE QUOTIENTS HAVE A TRANSITIVE NORMALITY RELATION
    FRANCIOSI, S
    DEGIOVANNI, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1992, 6B (02): : 329 - 350
  • [39] Groups with Chernikov conjugacy classes in which Sylow permutability is a transitive relation
    Munoz-Escolano, J. M.
    Otal, J.
    Turbaj, N. A.
    JOURNAL OF ALGEBRA, 2010, 323 (03) : 854 - 863
  • [40] ON FINITE P-GROUPS IN WHICH SUBGROUP-PERMUTABILITY IS TRANSITIVE
    BIANCHI, M
    MAURI, AGB
    VERARDI, L
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9B (01): : 61 - 76