Unsupervised domain adaptive building semantic segmentation network by edge-enhanced contrastive learning

被引:3
|
作者
Yang, Mengyuan [1 ,2 ,3 ,4 ]
Yang, Rui [1 ,2 ,3 ,4 ]
Tao, Shikang [1 ,2 ,3 ,4 ]
Zhang, Xin [5 ,6 ]
Wang, Min [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Geog, Nanjing 210023, Peoples R China
[3] Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing 210023, Peoples R China
[4] State Key Lab Cultivat Base Geog Environm Evolut J, Nanjing 210023, Peoples R China
[5] Qilu Aerosp Informat Res Inst, Jinan 250132, Peoples R China
[6] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Contrastive learning; Domain adaptation; Semantic segmentation; REMOTE-SENSING IMAGERY; EXTRACTION; MULTISCALE; NET;
D O I
10.1016/j.neunet.2024.106581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) is a weakly supervised learning technique that classifies images in the target domain when the source domain has labeled samples, and the target domain has unlabeled samples. Due to the complexity of imaging conditions and the content of remote sensing images, the use of UDA to accurately extract artificial features such as buildings from high-spatial-resolution (HSR) imagery is still challenging. In this study, we propose a new UDA method for building extraction, the contrastive domain adaptation network (CDANet), by utilizing adversarial learning and contrastive learning techniques. CDANet consists of a single multitask generator and dual discriminators. The generator employs a region and edge dual-branch structure that strengthens its edge extraction ability and is beneficial for the extraction of small and densely distributed buildings. The dual discriminators receive the region and edge prediction outputs and achieve multilevel adversarial learning. During adversarial training processing, CDANet aligns the cross-domain of similar pixel features in the embedding space by constructing the regional pixelwise contrastive loss. A self-training (ST) strategy based on pseudolabel generation is further utilized to address the target intradomain discrepancy. Comprehensive experiments are conducted to validate CDANet on three publicly accessible datasets, namely the WHU, Austin, and Massachusetts. Ablation experiments show that the generator network structure, contrastive loss and ST strategy all improve the building extraction accuracy. Method comparisons validate that CDANet achieves superior performance to several state-of-the-art methods, including AdaptSegNet, AdvEnt, IntraDA, FDANet and ADRS, in terms of F1 score and mIoU.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation
    Chen, Tao
    Wang, Shui-Hua
    Wang, Qiong
    Zhang, Zheng
    Xie, Guo-Sen
    Tang, Zhenmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1042 - 1054
  • [12] PANDA: A Polarized Attention Network for Enhanced Unsupervised Domain Adaptation in Semantic Segmentation
    Kao, Chiao-Wen
    Chang, Wei-Ling
    Lee, Chun-Chieh
    Fan, Kuo-Chin
    ELECTRONICS, 2024, 13 (21)
  • [13] Unsupervised Adversarial Domain Adaptation Network for Semantic Segmentation
    Liu, Wei
    Su, Fulin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1978 - 1982
  • [14] Unsupervised semantic segmentation of radar sounder data using contrastive learning
    Donini, Elena
    Amico, Mattia
    Bruzzone, Lorenzo
    Bovolo, Francesca
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVIII, 2022, 12267
  • [15] A hybrid domain learning framework for unsupervised semantic segmentation
    Zhang, Yuhang
    Tian, Shishun
    Liao, Muxin
    Zou, Wenbin
    Xu, Chen
    NEUROCOMPUTING, 2023, 516 : 133 - 145
  • [16] Hierarchical Contrastive Learning for Semantic Segmentation
    Jiang, Jie
    He, Xingjian
    Wang, Weining
    Lu, Hanqing
    Liu, Jing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [17] DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation
    Gao, Li
    Zhang, Jing
    Zhang, Lefei
    Tao, Dacheng
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2825 - 2833
  • [18] DSM-Assisted Unsupervised Domain Adaptive Network for Semantic Segmentation of Remote Sensing Imagery
    Zhou, Shunping
    Feng, Yuting
    Li, Shengwen
    Zheng, Daoyuan
    Fang, Fang
    Liu, Yuanyuan
    Wan, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [19] Multichannel Semantic Segmentation with Unsupervised Domain Adaptation
    Watanabe, Kohei
    Saito, Kuniaki
    Ushiku, Yoshitaka
    Harada, Tatsuya
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 600 - 616
  • [20] Rethinking unsupervised domain adaptation for semantic segmentation
    Wang, Zhijie
    Suganuma, Masanori
    Okatani, Takayuki
    PATTERN RECOGNITION LETTERS, 2024, 186 : 119 - 125