Microwave catalytic co-pyrolysis of microalgae and high density polyethylene over activated carbon supported bimetallic: Characteristics and bio-oil analysis

被引:1
|
作者
Fan, Dianzhao [1 ]
Yang, Ronglin [1 ]
Chen, Chunxiang [1 ,2 ,3 ]
Qiu, Song [1 ]
He, Shiyuan [1 ]
Shi, Haosen [1 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Univ Rd 100, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Petrochem Resources Proc & Proc In, Nanning 530004, Peoples R China
[3] Guangdong Prov Key Lab Efficient & Clean Energy Ut, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
High density polyethylene; Chlorella vulgaris; Activated carbon supported catalysts; Microwave co-pyrolysis; Bio-oil; CHLORELLA-VULGARIS; POLYPROPYLENE; KINETICS; BIOMASS; TOLUENE;
D O I
10.1016/j.renene.2024.121323
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Three activated carbon (AC) supported bimetallic catalysts (Ce-Fe/AC, Ce-Ni/AC, Ce-Cu/AC) were prepared, and the catalysts' impacts on the microwave co-pyrolysis of Chlorella vulgaris (C. vulgaris) and high density polyethylene (HDPE) (mixing ratio of 1:1, C1HP1) were explored. The findings indicated that the catalysts promoted the co-pyrolysis of C1HP1 substantially at 40 % and 50 % additions. The minimum reaction time (2945 s) was observed at 40 % Ce-Fe/AC. Compared to the C1HP1 group, Ce-Fe/AC groups exhibited a pronounced promotional impact on bio-oil production, with the maximum bio-oil yield (25.8 %) catalyzed by 30 % Ce-Fe/AC. Furthermore, the catalyst's high hydrogenation activity and deoxygenation promoted the formation of H2O, NH3 and HCN, achieving over 40 % efficiencies in deoxygenation and denitrification for bio-oil. 40 % Ce-Cu/AC exhibited superior performance with the highest hydrocarbon (67.43 %) and aromatic hydrocarbon content (50.75 %), as well as leading deoxygenation (44.38 %) and nitrogen removal (58.63 %) efficiency among the AC supported bimetallic catalysts.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Catalytic co-pyrolysis of sewage sludge and rice husk over biochar catalyst: Bio-oil upgrading and catalytic mechanism
    Qiu, Zhenzi
    Zhai, Yunbo
    Li, Shanhong
    Liu, Xiangmin
    Liu, Xiaoping
    Wang, Bei
    Liu, Yali
    Li, Caiting
    Hu, Yanjun
    WASTE MANAGEMENT, 2020, 114 : 225 - 233
  • [32] Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production
    Wang, Yunpu
    Dai, Leilei
    Fan, Liangliang
    Duan, Dengle
    Liu, Yuhuan
    Ruan, Roger
    Yu, Zhenting
    Liu, Yuezhen
    Jiang, Lin
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 123 : 224 - 228
  • [33] Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
    Duan, Dengle
    Wang, Yunpu
    Dai, Leilei
    Ruan, Roger
    Zhao, Yunfeng
    Fan, Liangliang
    Tayier, Maimaitiaili
    Liu, Yuhuan
    BIORESOURCE TECHNOLOGY, 2017, 241 : 207 - 213
  • [34] Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production
    Zhao, Yunfeng
    Wang, Yunpu
    Duan, Dengle
    Ruan, Roger
    Fan, Liangliang
    Zhou, Yue
    Dai, Leilei
    Lv, Jiaqian
    Liu, Yuhuan
    BIORESOURCE TECHNOLOGY, 2018, 249 : 69 - 75
  • [35] Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective
    Su, Guangcan
    Ong, Hwai Chyuan
    Gan, Yong Yang
    Chen, Wei-Hsin
    Chong, Cheng Tung
    Ok, Yong Sik
    BIORESOURCE TECHNOLOGY, 2022, 344
  • [36] Co-pyrolysis Characteristics and Synergistic Interaction of Waste Polyethylene Terephthalate and Woody Biomass towards Bio-Oil Production
    Anandaram, Harishchander
    Srivastava, Bipin Kumar
    Vijayakumar, B.
    Madhu, P.
    Depoures, Melvin Victor
    Patil, Pravin P.
    Chhabria, Sarika
    Patel, Praveen Bhai
    Prabhakar, S.
    JOURNAL OF CHEMISTRY, 2022, 2022
  • [37] Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene
    Bu, Quan
    Chen, Kun
    Xie, Wei
    Liu, Yuanyuan
    Cao, Mengjie
    kong, Xianghai
    Chu, Qiulu
    Mao, Hanping
    BIORESOURCE TECHNOLOGY, 2019, 291
  • [38] Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production
    Wang, Yunpu
    Dai, Leilei
    Fan, Liangliang
    Cao, Leipeng
    Zhou, Yue
    Zhao, Yunfeng
    Liu, Yuhuan
    Ruan, Roger
    WASTE MANAGEMENT, 2017, 61 : 276 - 282
  • [39] Co-pyrolysis of neem sawdust and high-density polyethylene towards aromatic-rich bio-oil: Significance of zeolite mesopores
    Wang, Jingyue
    Wu, Liu
    Huang, Fanfan
    Liang, Jie
    FUEL, 2025, 382
  • [40] Improvement of bio-oil yield and quality in co-pyrolysis of corncobs and high density polyethylene in a fixed bed reactor at low heating rate
    Supramono, D.
    Lusiani, S.
    SECOND INTERNATIONAL CONFERENCE ON CHEMICAL ENGINEERING (ICCE) UNPAR, 2016, 162